Numerical Verification of the Ternary Goldbach Conjecture up to 8.875·10<sup>30</sup>

Type: Article

Publication Date: 2013-10-02

Citations: 11

DOI: https://doi.org/10.1080/10586458.2013.831742

Locations

  • Experimental Mathematics - View

Similar Works

Action Title Year Authors
+ Numerical Verification of the Ternary Goldbach Conjecture up to 8.875e30 2013 H. A. Helfgott
David J. Platt
+ The ternary Goldbach problem 2015 H. A. Helfgott
+ A review of "The Ternary Goldbach Conjecture" by Harald Helfgott 2015 Владик Крейнович
+ Proof of the Binary Goldbach Conjecture&amp;nbsp; 2024 PHILIPPE SAINTY
+ Elementary Proof of the Goldbach Conjecture 2017 Stephen Marshall
+ PDF Chat None 2022 Khusid Mykhaylo
+ New Experimental Results on the Goldbach Conjecture 1965 M. L. Stein
P. R. Stein
+ Elementary Proof that the Goldbach Conjecture Is False 2020 Stephen M. Marshall
+ PDF Chat THE BINARY GOLDBACH CONJECTURE 2021 Jan Feliksiak
+ Ternary Goldbach Conjecture implies ABC Conjecture 2023 Dmitri Martila
+ PDF Chat New experimental results concerning the Goldbach conjecture 1998 Jean-Marc Deshouillérs
H. J. J. te Riele
Yannick Saouter
+ Is Goldbach Conjecture true? 2017 Paolo Starni
+ PDF Chat Checking the Goldbach Conjecture up to 4 ⋅10 11 1993 Matti K. Sinisalo
+ On the binary Goldbach conjecture under primorial-based constraints 2024 R Laniewski
+ Ternary Goldbach Conjecture implies Strong Goldbach Conjecture 2023 Dmitri Martila
+ Goldbach' Conjecture (8): Upper Bound Estimation of Number of Goldbach' Primes 2010 Tong Xin Ping
+ Two Independent Checkings of the Weak Goldbach Conjecture up to 10<sup>27</sup> 2015 Eduard Roure
Artur Travesa
+ The ternary Goldbach conjecture is true 2013 H. A. Helfgott
+ PDF Chat The ternary Goldbach problem in arithmetic progressions 1997 Jianya Liu
Tao Zhan
+ The ternary Goldbach–Vinogradov theorem with almost equal primes from the Beatty sequence 2012 Guangshi Lü
Haiwei Sun