Type: Article
Publication Date: 2000-01-01
Citations: 1
DOI: https://doi.org/10.1214/ecp.v5-1019
Let $B(t)$ denote Brownian motion in $R^d$. It is a classical fact that for any Borel set $A$ in $R^d$, the volume $V_1(A)$ of the Wiener sausage $B[0,1]+A$ has nonzero expectation iff $A$ is nonpolar. We show that for any nonpolar $A$, the random variable $V_1(A)$ is unbounded.
Action | Title | Year | Authors |
---|---|---|---|
+ PDF Chat | A large-deviation result for the range of random walk and for the Wiener sausage | 2001 |
Yuji Hamana Harry Kesten |
Action | Title | Year | Authors |
---|---|---|---|
+ PDF Chat | Martin Capacity for Markov Chains | 1995 |
Itaı Benjamini Robin Pemantle Yuval Peres |