A Large Wiener Sausage from Crumbs

Type: Article

Publication Date: 2000-01-01

Citations: 1

DOI: https://doi.org/10.1214/ecp.v5-1019

Abstract

Let $B(t)$ denote Brownian motion in $R^d$. It is a classical fact that for any Borel set $A$ in $R^d$, the volume $V_1(A)$ of the Wiener sausage $B[0,1]+A$ has nonzero expectation iff $A$ is nonpolar. We show that for any nonpolar $A$, the random variable $V_1(A)$ is unbounded.

Locations

  • Electronic Communications in Probability - View - PDF

Similar Works

Action Title Year Authors
+ An isoperimetric inequality for the Wiener sausage 2011 Yuval Peres
Perla Sousi
+ An isoperimetric inequality for the Wiener sausage 2011 Yuval Peres
Perla Sousi
+ Asymptotic expansion of the expected volume of the Wiener sausage in even dimensions 2014 Yuji Hamana
+ On the expected volume of the Wiener sausage for a Brownian bridge 1997 M. van den Berg
Erwin Bolthausen
+ Strong approximation of high dimensional Wiener sausage 2011 Wang Yan
+ PDF Chat On the volume of the shrinking branching Brownian sausage 2020 Mehmet Öz
+ PDF Chat On the Volume of the Wiener Sausage 1990 Erwin Bolthausen
+ A formula for the expected volume of the Wiener sausage with constant drift 2015 Yuji Hamana
Hiroyuki Matsumoto
+ PDF Chat Strong approximation of high dimensional Wiener sausage 2011 Yanqing Wang
+ Moderate deviations for the volume of the Wiener sausage 2001 M. van den Berg
Erwin Bolthausen
Franciscus den Hollander
+ PDF Chat ASYMPTOTIC EXPANSION OF THE EXPECTED VOLUME OF THE WIENER SAUSAGE IN EVEN DIMENSIONS 2016 Yuji Hamana
+ Branching random walks and Minkowski sum of random walks 2023 Amine Asselah
Izumi Okada
Bruno Schapira
Perla Sousi
+ PDF Chat A large-deviation result for the range of random walk and for the Wiener sausage 2001 Yuji Hamana
Harry Kesten
+ PDF Chat A formula for the expected volume of the Wiener sausage with constant drift 2016 Yuji Hamana
Hiroyuki Matsumoto
+ On the volume of the shrinking branching Brownian sausage 2019 Mehmet Öz
+ PDF Chat On the volume of the intersection of two Wiener sausages 2004 M. van den Berg
Erwin Bolthausen
Frank den Hollander
+ The expected volume and surface area of the Wiener sausage in odd dimensions 2012 Yuji Hamana
+ On the volume of the shrinking branching Brownian sausage 2019 Mehmet Öz
+ Moderate deviations for the volume of the Wiener sausage 2001 M. van den Berg
Erwin Bolthausen
Frank den Hollander
+ PDF Chat Moderate Deviations for the Volume of the Wiener Sausage 2001 M. van den Berg
Erwin Bolthausen
Frank den Hollander

Works Cited by This (1)

Action Title Year Authors
+ PDF Chat Martin Capacity for Markov Chains 1995 Itaı Benjamini
Robin Pemantle
Yuval Peres