On solutions of elliptic equations that decay rapidly on paths

Type: Article

Publication Date: 1995-01-01

Citations: 1

DOI: https://doi.org/10.1090/s0002-9939-1995-1277091-x

Abstract

Let <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper P left-parenthesis upper D right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mi>P</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>D</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">P(D)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be an elliptic differential operator on <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="double-struck upper R Superscript n"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="double-struck">R</mml:mi> </mml:mrow> <mml:mi>n</mml:mi> </mml:msup> </mml:mrow> <mml:annotation encoding="application/x-tex">{\mathbb {R}^n}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> with constant coefficients. It is known that if <italic>u</italic> is a solution of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper P left-parenthesis upper D right-parenthesis u equals 0"> <mml:semantics> <mml:mrow> <mml:mi>P</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>D</mml:mi> <mml:mo stretchy="false">)</mml:mo> <mml:mi>u</mml:mi> <mml:mo>=</mml:mo> <mml:mn>0</mml:mn> </mml:mrow> <mml:annotation encoding="application/x-tex">P(D)u = 0</mml:annotation> </mml:semantics> </mml:math> </inline-formula> on an unbounded domain and if <italic>u</italic> decays uniformly and sufficiently rapidly, then <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="u equals 0"> <mml:semantics> <mml:mrow> <mml:mi>u</mml:mi> <mml:mo>=</mml:mo> <mml:mn>0</mml:mn> </mml:mrow> <mml:annotation encoding="application/x-tex">u = 0</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. In this note it is shown that the same conclusion holds if <italic>u</italic> decays rapidly, but not a priori uniformly, on a sufficiently large set of unbounded paths.

Locations

  • Proceedings of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ On the elliptic equation Δ𝑒+𝐾(π‘₯)𝑒^{2𝑒}=0 on 𝐡² 2004 WU San-xing
Hongying Liu
+ PDF Chat On the elliptic equations Δ𝑒=𝐾(π‘₯)𝑒^{𝜎} and Δ𝑒=𝐾(π‘₯)𝑒^{2𝑒} 1987 Kuo-Shung Cheng
Jenn-Tsann Lin
+ PDF Chat On the elliptic equation Δ𝑒=πœ‘(π‘₯)𝑒^{𝛾} in 𝑅² 1985 Nichiro Kawano
Takaŝi Kusano
Manabu Naito
+ Properties of solutions of a class of planar elliptic operators with degeneracies 2011 Paulo da Silva
Abdelhamid Meziani
+ PDF Chat On an elliptic boundary value problem not in divergence form 1983 NguyΓͺn Phuong CΓ‘c
+ PDF Chat On a singular elliptic equation 1983 Wei Ni
+ On elliptic equations 1987 I. M. Gel'fand
+ PDF Chat Uniform approximation by solutions of elliptic equations 1973 Barnet M. Weinstock
+ PDF Chat On 𝐴⁴+𝐡⁴+𝐢⁴=𝐷⁴ 1988 Noam D. Elkies
+ PDF Chat A Laurent expansion for solutions to elliptic equations 1973 Reese Harvey
John C. Polking
+ PDF Chat Analytic properties of elliptic and conditionally elliptic operators. 1971 Michael E. Taylor
+ PDF Chat A unique continuation property on the boundary for solutions of elliptic equations 1993 Zhi Ren Jin
+ A note on exponential decay properties of ground states for quasilinear elliptic equations 2005 Yi Li
Chunshan Zhao
+ PDF Chat On the singular boundary value problem for elliptic equations 1973 Kazunari Hayashida
+ PDF Chat On an elliptic equation with concave and convex nonlinearities 1995 Thomas Bartsch
Michel Willem
+ PDF Chat On elliptic functions 1899 James Pierpont
+ PDF Chat The structure of solutions of a semilinear elliptic equation 1992 Kuo-Shung Cheng
Tai Chia Lin
+ On stable entire solutions of semi-linear elliptic equations with weights 2011 Craig Cowan
Mostafa Fazly
+ On elliptic equations with piecewise constant coefficients. II 1972 Alfredo Lorenzi
+ PDF Chat On the growth of solutions in the oscillatory case 1975 Robert M. Kauffman

Works That Cite This (1)

Action Title Year Authors
+ Research Problems in Function Theory (New Edition) 2018 W. K. Hayman
Eleanor F. Lingham