Is the critical percolation probability local?

Type: Article

Publication Date: 2009-11-18

Citations: 64

DOI: https://doi.org/10.1007/s00440-009-0251-5

Locations

  • Probability Theory and Related Fields - View - PDF

Similar Works

Action Title Year Authors
+ Is the critical percolation probability local? 2009 Itaı Benjamini
Asaf Nachmias
Yuval Peres
+ Critical percolation on random regular graphs 2017 Felix Joos
Guillem Perarnau
+ Critical percolation on random regular graphs 2017 Felix Joos
Guillem Perarnau
+ PDF Chat Critical percolation on random regular graphs 2017 Felix Joos
Guillem Perarnau
+ PDF Chat Components, large and small, are as they should be I: supercritical percolation on regular graphs of growing degree 2024 Sahar Diskin
Michael Krivelevich
+ PDF Chat Critical threshold for regular graphs 2024 Ishaan Bhadoo
+ Critical Density for Percolation 2017 Guoqiang Mao
+ Mean-Field Criticality for Percolation on Planar Non-Amenable Graphs 2002 Roberto H. Schonmann
+ The Percolation Transition 2011 Annick Lesne
M. Laguës
+ The critical percolation probability is local 2023 Philip Easo
Tom Hutchcroft
+ A local limit theorem for the critical random graph 2008 Remco van der Hofstad
Wouter Kager
Tobias Müller
+ Critical and near-critical level-set percolation of the Gaussian free field on regular trees 2025 Jǐŕı Černý
Ramon Locher
+ PDF Chat Percolation Processes: Lower Bounds for the Critical Probability 1957 J. M. Hammersley
+ PDF Chat Giant vacant component left by a random walk in a random d-regular graph 2011 Jǐŕı Černý
Augusto Teixeira
David Windisch
+ Critical percolation on random regular graphs 2007 Asaf Nachmias
Yuval Peres
+ Level-set percolation of the Gaussian free field on regular graphs III: giant component on expanders 2021 Jǐŕı Černý
+ PDF Chat Critical random graphs: Diameter and mixing time 2008 Asaf Nachmias
Yuval Peres
+ PDF Chat Sharp threshold for percolation on expanders 2012 Stéphane Boucheron
I. Benjamini
Gábor Lugosi
R. Rossignol
+ PDF Chat Components, large and small, are as they should be II: supercritical percolation on regular graphs of constant degree 2024 Sahar Diskin
Michael Krivelevich
+ Random growth and near-critical percolation 2012 Rob van den Berg
van den