On Gospers formula for the Gamma function

Type: Article

Publication Date: 2011-01-01

Citations: 38

DOI: https://doi.org/10.7153/jmi-05-53

Abstract

The aim of this paper is to establish a double inequality related to Gosper formula for approximation of big factorials

Locations

  • Journal of Mathematical Inequalities - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat Asymptotic formulas for the gamma function by Gosper 2015 Long Lin
Chao-Ping Chen
+ On Burnside type approximation for the gamma function 2019 Zhen-Hang Yang
Jing-Feng Tian
+ Formulae for Euler’s gamma without logarithm 2014 Juozas Juvencijus Mačys
R. Banys
+ PDF Chat On rational bounds for the gamma function 2017 Zhen-Hang Yang
Wei-Mao Qian
Yu‐Ming Chu
Wen Zhang
+ PDF Chat REFINEMENTS OF RAMANUJAN FORMULA FOR GAMMA FUNCTION 2014 Sorina Dumitrescu
Cristinel Mortici
+ New Asymptotic Formulas and Inequalities for the Gamma Function Based on Continued Fractions 2018 Dawei Lu
Lixin Song
Xiaoguang Wang
Junying Wang
+ On the Remainder in an Asymptotic Expansion of the Double Gamma Function 2005 Henrik L. Pedersen
+ A Kind of New Continued Fraction Approximation of Gamma Function Based on Mortici’s Formula 2017 Dawei Lu
Tianyi Qu
Xiaoguang Wang
+ Inequalities for Gamma function 2002 Mihály Bencze
D. M. Bătineţu-Giurgiu
+ PDF Chat Sharp bounds for gamma and digamma function arising from Burnside's formula 2010 Cristinel Mortici
+ A new sharp approximation for the Gamma function related to Burnside’s formula 2014 Dawei Lu
+ A quicker approximation of the gamma function towards the Windschitl’s formula by continued fraction 2018 Hongzeng Wang
Qingling Zhang
Dawei Lu
+ Inequalities for the double gamma function 2008 Necdet Batır
+ On Ramanujan’s large argument formula for the Gamma function 2011 Cristinel Mortici
+ On the values of a function related to Euler's gamma function 1981 van de J. Lune
Marc Voorhoeve
+ PDF Chat Notes on Upper and Lower Bounds of two Inequalities for the Gamma Function 2010 Armend Sh. SHABANİ
+ PDF Chat Concerning Two Series for the Gamma Function 1968 John W. Wrench
+ PDF Chat Note on the gamma function 1913 George D. Birkhoff
+ Note on the Gamma Function 1948 J. G. Wendel
+ An elegant refinement of a double inequality for the gamma function 2010 Feng Qi
Bai‐Ni Guo