Carleson measures on spaces of homogeneous type

Type: Article

Publication Date: 1994-01-01

Citations: 3

DOI: https://doi.org/10.1090/s0002-9947-1994-1149122-2

Abstract

Let <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper X"> <mml:semantics> <mml:mi>X</mml:mi> <mml:annotation encoding="application/x-tex">X</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be a space of homogeneous type in the sense of Coifman and Weiss <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="left-bracket CW 2 right-bracket"> <mml:semantics> <mml:mrow> <mml:mo stretchy="false">[</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mtext>CW</mml:mtext> </mml:mrow> <mml:mn>2</mml:mn> <mml:mo stretchy="false">]</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">[{\text {CW}}2]</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and let <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper X Superscript plus Baseline equals upper X times bold upper R Superscript plus"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mi>X</mml:mi> <mml:mo>+</mml:mo> </mml:msup> </mml:mrow> <mml:mo>=</mml:mo> <mml:mi>X</mml:mi> <mml:mo>×<!-- × --></mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="bold">R</mml:mi> </mml:mrow> </mml:mrow> <mml:mo>+</mml:mo> </mml:msup> </mml:mrow> </mml:mrow> <mml:annotation encoding="application/x-tex">{X^ + } = X \times {{\mathbf {R}}^ + }</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. A positive function <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper F"> <mml:semantics> <mml:mi>F</mml:mi> <mml:annotation encoding="application/x-tex">F</mml:annotation> </mml:semantics> </mml:math> </inline-formula> on <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper X Superscript plus"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mi>X</mml:mi> <mml:mo>+</mml:mo> </mml:msup> </mml:mrow> <mml:annotation encoding="application/x-tex">{X^ + }</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is said to have horizontal bounded ratio <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="left-parenthesis HBR right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mtext>HBR</mml:mtext> </mml:mrow> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">({\text {HBR}})</mml:annotation> </mml:semantics> </mml:math> </inline-formula> on <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper X Superscript plus"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mi>X</mml:mi> <mml:mo>+</mml:mo> </mml:msup> </mml:mrow> <mml:annotation encoding="application/x-tex">{X^ + }</mml:annotation> </mml:semantics> </mml:math> </inline-formula> if there is a constant <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper A Subscript upper F"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>A</mml:mi> <mml:mi>F</mml:mi> </mml:msub> </mml:mrow> <mml:annotation encoding="application/x-tex">{A_F}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> so that <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper F left-parenthesis x comma t right-parenthesis less-than-or-equal-to upper A Subscript upper F Baseline upper F left-parenthesis y comma t right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mi>F</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>x</mml:mi> <mml:mo>,</mml:mo> <mml:mi>t</mml:mi> <mml:mo stretchy="false">)</mml:mo> <mml:mo>≤<!-- ≤ --></mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>A</mml:mi> <mml:mi>F</mml:mi> </mml:msub> </mml:mrow> <mml:mi>F</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>y</mml:mi> <mml:mo>,</mml:mo> <mml:mi>t</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">F(x,t) \leq {A_F}F(y,t)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> whenever <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="rho left-parenthesis x comma y right-parenthesis greater-than t"> <mml:semantics> <mml:mrow> <mml:mi>ρ<!-- ρ --></mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>x</mml:mi> <mml:mo>,</mml:mo> <mml:mi>y</mml:mi> <mml:mo stretchy="false">)</mml:mo> <mml:mo>&gt;</mml:mo> <mml:mi>t</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">\rho (x,y) &gt; t</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. (By Harnack’s inequality, a well-known example is any positive harmonic function in the upper half plane.) <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="HBR"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mtext>HBR</mml:mtext> </mml:mrow> <mml:annotation encoding="application/x-tex">{\text {HBR}}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a rich class that is closed under a wide variety of operations and it provides useful majorants for many classes of functions that are encountered in harmonic analysis. We are able to prove theorems in spaces of homogeneous type for functions in <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="HBR"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mtext>HBR</mml:mtext> </mml:mrow> <mml:annotation encoding="application/x-tex">{\text {HBR}}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> which are analogous to the classical Carleson measure theorems and to extend these results to the functions which they majorize. These results may be applied to obtain generalizations of the original Carleson measure theorem, and of results of Flett’s which contain the Hardy-Littlewood theorems on intermediate spaces of analytic functions. Hörmander’s generalization of Carleson’s theorem is included and it is possible to extend those results to the atomic <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper H Superscript p"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mi>H</mml:mi> <mml:mi>p</mml:mi> </mml:msup> </mml:mrow> <mml:annotation encoding="application/x-tex">{H^p}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> spaces of Coifman and Weiss.

Locations

  • Transactions of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ Measures on hyperspaces 2016 Włodzimierz J. Charatonik
Matt Insall
+ PDF Chat On linear topological properties of 𝐻¹ on spaces of homogeneous type 1990 Paul F. X. Müller
+ PDF Chat Quasiconformal mappings and Royden algebras in space 1971 Lawrence G. Lewis
+ PDF Chat A Carleson measure theorem for Bergman spaces 1975 William W. Hastings
+ Local structure of homogeneous 𝐴𝑁𝑅-spaces 2024 Vesko Valov
+ PDF Chat The Hewitt realcompactification of products 1981 Haruto Ohta
+ PDF Chat Morrey space 1986 Cristina T. Zorko
+ PDF Chat On barely 𝛼-compact spaces and remote points in 𝛽_{𝛼}𝑋_{𝑋} 1989 Robert L. Blair
Lech Polkowski
Mary Anne Swardson
+ PDF Chat On functions arising as potentials on spaces of homogeneous type 1997 A. Eduardo Gatto
Stephen Vági
+ PDF Chat Duality in 𝐵*-algebras 1973 Sheila A. McKilligan
+ PDF Chat A characterization for the products of 𝑘- and ℵ₀-spaces and related results 1976 Yoshio Tanaka
+ PDF Chat Tychonoff reflection in products and the 𝜔-topology on function spaces 1990 Stephen Watson
+ Projective boundedness and convolution of Fréchet measures 2000 Ron C. Blei
J. Caggiano
+ PDF Chat Bohr compactification and continuous measures 1980 Sadahiro Saeki
+ PDF Chat On the dimensional properties of Stone-Čech remainder of 𝑃₀-spaces 1994 Haim Attia
+ PDF Chat Quasi 𝐹-covers of Tychonoff spaces 1987 M. Henriksen
Johannes Vermeer
R. Grant Woods
+ PDF Chat 𝐺_{2𝑛} spaces 1970 Donald O. Koehler
+ PDF Chat On two function spaces which are similar to 𝐿₀ 1990 S. J. Dilworth
David A. Trautman
+ PDF Chat For any 𝑋, the product 𝑋×𝑌 is homogeneous for some 𝑌 1983 В. В. Успенский
+ PDF Chat 𝐵𝑀𝑂(𝜌) and Carleson measures 1985 Wayne Smith