Homology of branched cyclic covers of knots

Type: Article

Publication Date: 1990-01-01

Citations: 3

DOI: https://doi.org/10.1090/s0002-9939-1990-0984809-5

Abstract

This paper presents a new formula for the first integral homology group of the branched cyclic <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="p"> <mml:semantics> <mml:mi>p</mml:mi> <mml:annotation encoding="application/x-tex">p</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-fold cover <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="normal upper Sigma Subscript p"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi mathvariant="normal">Σ<!-- Σ --></mml:mi> <mml:mi>p</mml:mi> </mml:msub> </mml:mrow> <mml:annotation encoding="application/x-tex">{\Sigma _p}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of a knot <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper K"> <mml:semantics> <mml:mi>K</mml:mi> <mml:annotation encoding="application/x-tex">K</mml:annotation> </mml:semantics> </mml:math> </inline-formula> in the <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="3"> <mml:semantics> <mml:mn>3</mml:mn> <mml:annotation encoding="application/x-tex">3</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-sphere. Given a diagram of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper K"> <mml:semantics> <mml:mi>K</mml:mi> <mml:annotation encoding="application/x-tex">K</mml:annotation> </mml:semantics> </mml:math> </inline-formula> with <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="k"> <mml:semantics> <mml:mi>k</mml:mi> <mml:annotation encoding="application/x-tex">k</mml:annotation> </mml:semantics> </mml:math> </inline-formula> crossings, let <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper A left-parenthesis t right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mi>A</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>t</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">A(t)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be the <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="left-parenthesis k minus 1 right-parenthesis times left-parenthesis k minus 1 right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mi>k</mml:mi> <mml:mo>−<!-- − --></mml:mo> <mml:mn>1</mml:mn> <mml:mo stretchy="false">)</mml:mo> <mml:mo>×<!-- × --></mml:mo> <mml:mo stretchy="false">(</mml:mo> <mml:mi>k</mml:mi> <mml:mo>−<!-- − --></mml:mo> <mml:mn>1</mml:mn> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">(k - 1) \times (k - 1)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> Alexander matrix of the diagram. Let <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper C equals upper A left-parenthesis 1 right-parenthesis Superscript negative 1 Baseline upper A left-parenthesis 0 right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mi>C</mml:mi> <mml:mo>=</mml:mo> <mml:mi>A</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo stretchy="false">(</mml:mo> <mml:mn>1</mml:mn> <mml:msup> <mml:mo stretchy="false">)</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo>−<!-- − --></mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msup> </mml:mrow> <mml:mi>A</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mn>0</mml:mn> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">C = A{(1)^{ - 1}}A(0)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, and let <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper I"> <mml:semantics> <mml:mi>I</mml:mi> <mml:annotation encoding="application/x-tex">I</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be the identity matrix. Then <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="left-parenthesis upper C minus upper I right-parenthesis Superscript p Baseline minus upper C Superscript p"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo stretchy="false">(</mml:mo> <mml:mi>C</mml:mi> <mml:mo>−<!-- − --></mml:mo> <mml:mi>I</mml:mi> <mml:msup> <mml:mo stretchy="false">)</mml:mo> <mml:mi>p</mml:mi> </mml:msup> </mml:mrow> <mml:mo>−<!-- − --></mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mi>C</mml:mi> <mml:mi>p</mml:mi> </mml:msup> </mml:mrow> </mml:mrow> <mml:annotation encoding="application/x-tex">{(C - I)^p} - {C^p}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a presentation matrix for <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper H 1 left-parenthesis normal upper Sigma Subscript p Baseline right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>H</mml:mi> <mml:mn>1</mml:mn> </mml:msub> </mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi mathvariant="normal">Σ<!-- Σ --></mml:mi> <mml:mi>p</mml:mi> </mml:msub> </mml:mrow> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">{H_1}({\Sigma _p})</mml:annotation> </mml:semantics> </mml:math> </inline-formula>.

Locations

  • Proceedings of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat On the homology of finite cyclic coverings of higher-dimensional links 1974 De Witt Sumners
+ PDF Chat Branched cyclic covers of simple knots 1984 Paul Strickland
+ Linking numbers in rational homology 3-spheres, cyclic branched covers and infinite cyclic covers 2004 Józef H. Przytycki
Akira Yasuhara
+ PDF Chat Homology of Branched Cyclic Covers of Knots 1990 Stanley Ocken
+ On embedding the infinite cyclic coverings of knot complements into three sphere 2009 Zhiqing Yang
+ PDF Chat Torsion-groups of abelian coverings of links 1982 John P. Mayberry
Kunio Murasugi
+ PDF Chat On cyclic branched coverings of prime knots 2008 Michel Boileau
Luisa Paoluzzi
+ Four-genus and four-dimensional clasp number of a knot 2000 Hitoshi Murakami
Akira Yasuhara
+ PDF Chat Algebraic invariants of boundary links 1981 Nobuyuki Sato
+ PDF Chat A Chern character in cyclic homology 1992 Luca Q. Zamboni
+ PDF Chat Nil 𝐾-theory maps to cyclic homology 1987 Charles A. Weibel
+ PDF Chat Simply-connected branched coverings of 𝑆³ 1972 C. McA. Gordon
Wolfgang Heil
+ PDF Chat Realizability of branched coverings of surfaces 1984 Allan L. Edmonds
Ravi S. Kulkarni
R. E. Stong
+ Growth of order of homology of cyclic branched covers of knots 1989 Robert W. Riley
+ PDF Chat Homology invariants of cyclic coverings with application to links 1972 Yaichi Shinohara
D. W. Sumners
+ PDF Chat Homology Invariants of Cyclic Coverings with Application to Links 1972 Y. Shinohara
D. W. Sumners
+ PDF Chat Unknotted homology classes on unknotted surfaces in 𝑆³ 1990 Bruce Trace
+ PDF Chat On cyclic branched coverings of prime knots 2008 Michel Boileau
Luisa Paoluzzi
+ PDF Chat Representing homology classes of closed orientable surfaces 1976 Mark D. Meyerson
+ PDF Chat Branched coverings. I 1983 R. E. Stong

Works Cited by This (1)

Action Title Year Authors
+ Some aspects of classical knot theory 1978 C. McA. Gordon