Type: Article
Publication Date: 1999-03-31
Citations: 213
DOI: https://doi.org/10.1007/pl00011158
Using non-Archimedian integration over spaces of arcs of algebraic varieties, we define stringy Euler numbers associated with arbitrary Kawamata log-terminal pairs. There is a natural Kawamata log-terminal pair corresponding to an algebraic variety V having a regular action of a finite group G. In this situation we show that the stringy Euler number of this pair coincides with the physicists' orbifold Euler number defined by the Dixon-Harvey-Vafa-Witten formula. As an application, we prove a conjecture of Miles Reid on the Euler numbers of crepant desingularizations of Gorenstein quotient singularities.