Type: Article
Publication Date: 2008-01-01
Citations: 73
DOI: https://doi.org/10.1093/imrn/rnn012
Consider {(Mn, g(t)), 0 ⩽ t < T < ∞} as an unnormalized Ricci flow solution: for t ∈ [0, T). Richard Hamilton shows that if the curvature operator is uniformly bounded under the flow for all t ∈ [0, T) then the solution can be extended over T. Natasa Sesum proves that a uniform bound of Ricci tensor is enough to extend the flow. We show that if Ricci is bounded from below, then a scalar curvature integral bound is enough to extend flow, and this integral bound condition is optimal in some sense.