On the convergence of certain Gauss-type quadrature formulas for unbounded intervals

Type: Article

Publication Date: 1999-02-24

Citations: 18

DOI: https://doi.org/10.1090/s0025-5718-99-01107-2

Abstract

We consider the convergence of Gauss-type quadrature formulas for the integral $\int _0^\infty f(x)\omega (x)\mathrm {d}x$, where $\omega$ is a weight function on the half line $[0,\infty )$. The $n$-point Gauss-type quadrature formulas are constructed such that they are exact in the set of Laurent polynomials $\Lambda _{-p,q-1}=\{\sum _{k=-p}^{q-1} a_k x^k$}, where $p=p(n)$ is a sequence of integers satisfying $0\le p(n)\le 2n$ and $q=q(n)=2n-p(n)$. It is proved that under certain Carleman-type conditions for the weight and when $p(n)$ or $q(n)$ goes to $\infty$, then convergence holds for all functions $f$ for which $f\omega$ is integrable on $[0,\infty )$. Some numerical experiments compare the convergence of these quadrature formulas with the convergence of the classical Gauss quadrature formulas for the half line.

Locations

  • Mathematics of Computation - View - PDF
  • CiteSeer X (The Pennsylvania State University) - View - PDF
  • Lirias (KU Leuven) - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat Orthogonal Laurent Polynomials and Quadrature Formulas for Unbounded Intervals: I. Gauss-Type Formulas 2003 Adhemar Bultheel
Carlos DĂ­az Mendoza
Pablo GonzĂĄlez-Vera
R. Orive
+ Biorthogonal Polynomials and Numerical Integration Formulas for Infinite Intervals 2007 Avram Sidii
D. S. Lubinsky
+ A Note on Some Quadrature Formulas for the Interval (-∞, ∞) 1964 Seymour Haber
+ PDF Chat A note on some quadrature formulas for the interval (-∞,∞) 1964 Seymour Haber
+ Convergence of Gaussian quadrature formulas on infinite intervals 2003 Chaoying Zhou
+ Computation of Gauss-type quadrature formulas 2001 Dirk Laurie
+ Computation of Gauss-type quadrature formulas 2001 Dirk Laurie
+ On the numerical approximation for Fourier-type highly oscillatory integrals with Gauss-type quadrature rules 2017 Guo He
Chuanlin Zhang
+ Quadrature formulae of Gauss type based on Euler identities 2006 Iva Franjić
I‎. ‎Perić
Josip ‎Pečarić
+ Gauss-type quadrature for highly oscillatory integrals with algebraic singularities and applications 2016 Zhenhua Xu
Shuhuang Xiang
+ On the convergence of Gauss quadrature formulas 2008 Zhou Zhi-qiang
+ Weighted Polynomial Approximation and Quadrature Rules on Unbounded Intervals 2021 Peter Junghanns
G. Mastroianni
Incoronata Notarangelo
+ An Error Expansion for some Gauss–Turán Quadratures and L1-Estimates of the Remainder Term 2005 Gradimir V. Milovanović
Miodrag M. Spalević
+ PDF Chat Chebyshev series method for computing weighted quadrature formulas 2011 E. Berriochoa
A. Cachafeiro LĂłpez
J.R. IllĂĄn GonzĂĄlez
E. MartĂ­nez-Brey
+ PDF Chat Error Bounds for Gauss-Chebyshev Quadrature 1968 Franz Stetter
+ Some Numerical Integration Formulas of the Simpson Type 1990 Haruo Moriguchi
+ PDF Chat Error estimates of Gaussian quadrature formulae with the third class of Bernstein-SzegƑ weights 2017 Aleksandar V. Pejčev
+ PDF Chat A numerical integration formula based on the Bessel functions 2005 Hidenori Ogata
+ The error bounds of Gauss–Radau quadrature formulae with Bernstein–SzegƑ weight functions 2015 Aleksandar V. Pejčev
Miodrag M. Spalević
+ Convergence acceleration of some Gaussian quadrature formulas for analytic functions 1992 M. Kzaz

Works That Cite This (16)

Action Title Year Authors
+ Orthogonal Laurent polynomials. A new algebraic approach 2013 Ruymán Cruz‐Barroso
Carlos DĂ­az Mendoza
R. Orive
+ PDF Chat Orthogonal Rational Functions on the Unit Circle with Prescribed Poles not on the Unit Circle 2017 Adhemar Bultheel
Ruymán Cruz‐Barroso
Andreas Lasarow
+ The use of rational functions in numerical quadrature 2001 Walter Gautschi
+ Padé approximants and quadratures related to certain strong distributions 2001 Carlos Díaz Mendoza
Pablo GonzĂĄlez-Vera
R. Orive
+ Radau and Lobatto-type quadratures associated with strong Stieltjes distributions 2014 Carlos DĂ­az Mendoza
Pablo GonzĂĄlez Vera
M. Jiménez Paiz
Olav NjÄstad
+ PDF Chat Strong Stieltjes distributions and orthogonal Laurent polynomials with applications to quadratures and Padé approximation 2005 Carlos Díaz Mendoza
Pablo GonzĂĄlez-Vera
M. Jiménez-Paiz
+ On the convergence of two-point partial Padé approximants for meromorphic functions of Stieltjes type 2004 Carlos Díaz Mendoza
Pablo GonzĂĄlez-Vera
R. Orive
+ Orthogonal Laurent polynomials and quadrature formulas for unbounded intervals: II. Interpolatory rules 2004 Adhemar Bultheel
Carlos DĂ­az Mendoza
Pablo GonzĂĄlez-Vera
R. Orive
+ PDF Chat On the convergence of numerical integration as a finite matrix approximation to multiplication operator 2023 Juha Sarmavuori
Simo SÀrkkÀ
+ On computing rational Gauss-Chebyshev quadrature formulas 2005 Joris Van Deun
Adhemar Bultheel
Pablo GonzĂĄlez Vera