On the General Position Subset Selection Problem

Type: Article

Publication Date: 2013-01-01

Citations: 27

DOI: https://doi.org/10.1137/120897493

Abstract

Let $f(n,\ell)$ be the maximum integer such that every set of $n$ points in the plane with at most $\ell$ collinear contains a subset of $f(n,\ell)$ points with no three collinear. First we prove that if $\ell\leqslant O(\sqrt{n})$, then $f(n,\ell)\geqslant\Omega(\sqrt{n/\ln\ell})$. Second we prove that if $\ell\leqslant O(n^{(1-\epsilon)/2})$, then $f(n,\ell)\geqslant\Omega(\sqrt{n\log_\ell n})$, which implies all previously known lower bounds on $f(n,\ell)$ and improves them when $\ell$ is not fixed. A more general problem is to consider subsets with at most $k$ collinear points in a point set with at most $\ell$ collinear. We also prove analogous results in this setting.

Locations

  • SIAM Journal on Discrete Mathematics - View
  • arXiv (Cornell University) - View - PDF
  • CiteSeer X (The Pennsylvania State University) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ Finding Points in General Position 2015 Vincent Froese
Iyad Kanj
Andr茅 Nichterlein
Rolf Niedermeier
+ Finding Points in General Position 2015 Vincent Froese
Iyad Kanj
Andr茅 Nichterlein
Rolf Niedermeier
+ PDF Chat Subset Selection Problems in Planar Point Sets 2024 J贸zsef Balogh
Felix Christian Clemen
Adrian Dumitrescu
Dingyuan Liu
+ Sets in Almost General Position 2016 Luka Mili膰evi膰
+ PDF Chat Finding Points in General Position 2017 Vincent Froese
Iyad Kanj
Andr茅 Nichterlein
Rolf Niedermeier
+ An Improved Lower Bound for General Position Subset Selection 2017 Ali Gholami Rudi
+ An Improved Algorithm for General Position Subset Selection. 2017 Ali Gholami Rudi
+ PDF Chat An improved lower bound for general position subset selection 2017 Ali Gholami Rudi
+ Sets in Almost General Position 2016 Luka Mili膰evi膰
+ General Position Subsets and Independent Hyperplanes in d-Space 2014 Jean Cardinal
Csaba D. T贸th
David R. Wood
+ General Position Subsets and Independent Hyperplanes in d-Space 2014 Jean Cardinal
Csaba D. T贸th
David R. Wood
+ PDF Chat Many Collinear $$k$$ k -Tuples with no $$k+1$$ k + 1 Collinear Points 2013 J贸zsef Solymosi
Milo拧 Stojakovi膰
+ PDF Chat On the number of points in general position in the plane 2018 joszef balogh
J贸zsef Solymosi
+ PDF Chat Sets in Almost General Position 2017 Luka Mili膰evi膰
+ Many collinear k-tuples with no k+1 collinear points 2011 J贸zsef Solymosi
Milo vs Stojakovi膰
+ A Practical Algorithm for Enumerating Collinear Points 2017 Ali Gholami Rudi
Raimi Ayinde Rufai
+ ON POINT SETS WITHOUT k COLLINEAR POINTS 2003 Peter Bra脽
+ On higher dimensional point sets in general position 2022 Andrew Suk
Ji Zeng
+ A Practical Algorithm for Enumerating Collinear Points. 2017 Ali Gholami Rudi
Raimi Ayinde Rufai
+ Improved bounds for the expected number of $k$-sets 2021 Brett Leroux
Luis Rademacher