Inverse systems of absolute retracts and almost continuity

Type: Article

Publication Date: 1985-01-01

Citations: 3

DOI: https://doi.org/10.1090/s0002-9939-1985-0806096-9

Abstract

Suppose that <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper Y"> <mml:semantics> <mml:mi>Y</mml:mi> <mml:annotation encoding="application/x-tex">Y</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is the inverse limit of a sequence of absolute retracts such that each bonding map is a retraction. We show that <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper Y"> <mml:semantics> <mml:mi>Y</mml:mi> <mml:annotation encoding="application/x-tex">Y</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is the almost continuous retract of the Hilbert cube. It follows that <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper Y"> <mml:semantics> <mml:mi>Y</mml:mi> <mml:annotation encoding="application/x-tex">Y</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, the cone over <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper Y"> <mml:semantics> <mml:mi>Y</mml:mi> <mml:annotation encoding="application/x-tex">Y</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, the suspension of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper Y"> <mml:semantics> <mml:mi>Y</mml:mi> <mml:annotation encoding="application/x-tex">Y</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, and the product of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper Y"> <mml:semantics> <mml:mi>Y</mml:mi> <mml:annotation encoding="application/x-tex">Y</mml:annotation> </mml:semantics> </mml:math> </inline-formula> with any absolute retract must have the fixed point property.

Locations

  • Proceedings of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat Types of almost continuity 1983 B. Garrett
Kenneth R. Kellum
+ PDF Chat Linear spaces, absolute retracts, and the compact extension property 1988 Jos van der Bijl
Jan van Mill
+ PDF Chat Noninvertible retracts 1983 Joe Yanik
+ Non-reflexivity of the derivation space from Banach algebras of analytic functions 2007 Ebrahim Samei
+ Maps preserving numerical ranges of operator products 2005 Jinchuan Hou
Qinghui Di
+ PDF Chat Quasiconformal mappings and Royden algebras in space 1971 Lawrence G. Lewis
+ PDF Chat On mappings contractive in the sense of Kannan 1976 Ludvík Janoš
+ PDF Chat Stone-Čech remainders which make continuous images normal 1989 William G. Fleissner
Ronnie Levy
+ PDF Chat Ω-inverse limit stability theorem 1996 Hiroshi Ikeda
+ PDF Chat Continuity of translation in the dual of 𝐿^{∞}(𝐺) and related spaces 1991 Colin C. Graham
Anthony Lau
Michael Leinert
+ PDF Chat Complemented copies of 𝑐₀ in 𝐿^{∞}(𝜇,𝐸) 1994 Santiago Díaz-Madrigal
+ PDF Chat 𝐶(𝐾,𝐸) contains a complemented copy of 𝑐₀ 1984 Pilar Cembranos
+ PDF Chat Absolutely closed maps 1975 Louis M. Friedler
+ Tauberian theorems on ℝ⁺ and applications 2024 Wei-Gang Jian
Hui-Sheng Ding
+ PDF Chat A note on 𝐶_{𝑐}(𝑋) 1975 G. D. Richardson
D. C. Kent
+ PDF Chat Remarks on pseudo-contractive mappings 1970 W. A. Kirk
+ PDF Chat Inverse Systems of Absolute Retracts and Almost Continuity 1985 Vladimir N. Akis
+ PDF Chat The dimension of inverse limit and 𝑁-compact spaces 1982 Michael G. Charalambous
+ PDF Chat Subspace of 𝐿𝐶(𝐻) and 𝐶_{𝑝} 1975 Yaakov Friedman
+ PDF Chat Almost linear operators and functionals on 𝒞([0,1]) 1975 J. R. Baxter
R. V. Chacon