Finite-element analysis of contact between elastic self-affine surfaces

Type: Article

Publication Date: 2004-08-31

Citations: 435

DOI: https://doi.org/10.1103/physreve.70.026117

Abstract

Finite-element methods are used to study nonadhesive, frictionless contact between elastic solids with self-affine surfaces. We find that the total contact area rises linearly with the load at small loads. The mean pressure in the contact regions is independent of load and proportional to the root-mean-square slope of the surface. The constant of proportionality is nearly independent of the Poisson ratio and roughness exponent and lies between previous analytic predictions. The contact morphology is also analyzed. Connected contact regions have a fractal area and perimeter. The probability of finding a cluster of area ${a}_{c}$ drops as ${a}_{c}^{\ensuremath{-}\ensuremath{\tau}}$ where $\ensuremath{\tau}$ increases with a decrease in roughness exponent. The distribution of pressures shows an exponential tail that is also found in many jammed systems. These results are contrasted to simpler models and experiments.

Locations

  • Physical Review E - View
  • arXiv (Cornell University) - View - PDF
  • PubMed - View
  • DataCite API - View

Similar Works

Action Title Year Authors
+ PDF Chat Elastic contact between self-affine surfaces: comparison of numerical stress and contact correlation functions with analytic predictions 2008 Carlos Campañá
Martin H. Müser
Mark O. Robbins
+ PDF Chat Self-Affine Elastic Contacts: Percolation and Leakage 2012 Wolf B. Dapp
Andreas Lücke
B. N. J. Persson
Martin H. Müser
+ PDF Chat Stiffness of Contacts between Rough Surfaces 2011 Sreekanth Akarapu
Tristan A. Sharp
Mark O. Robbins
+ PDF Chat Adhesive Wear Regimes on Rough Surfaces and Interaction of Micro-contacts 2021 Son Pham-Ba
Jean‐François Molinari
+ The contact mechanics challenge: Problem definition 2015 Martin H. Müser
Wolf B. Dapp
+ PDF Chat Elastic response of rough surfaces in partial contact 2002 G. G. Batrouni
Alex Hansen
Jean Schmittbuhl
+ PDF Chat Towards a modeling of the time dependence of contact area between solid bodies 2010 E. A. Jagla
+ On the contact area and mean gap of rough, elastic contacts: Dimensional analysis, numerical corrections and reference data 2013 Nikolay Prodanov
Wolf B. Dapp
Martin H. Müser
+ On the contact area and mean gap of rough, elastic contacts: Dimensional analysis, numerical corrections and reference data 2013 Nikolay Prodanov
Wolf B. Dapp
Martin H. Müser
+ A mechanically-derived contact model for adhesive elastic-perfectly plastic particles. Part II: Contact under high compaction--adding a bulk elastic response 2023 William Zunker
Ken Kamrin
+ PDF Chat Efficient modelling of particle collisions using a non-linear viscoelastic contact force 2015 Shouryya Ray
Tobias Kempe
Jochen Fröhlich
+ Elastic Response of Rough Surfaces in Partial Contact 2000 G. G. Batrouni
Alex Hansen
Jean Schmittbuhl
+ Elastic Response of Rough Surfaces in Partial Contact 2000 G. G. Batrouni
Alex Hansen
Jean Schmittbuhl
+ ANALYSIS OF DYNAMIC CHARACTERISTICS OF A CONTACT INTERACTION OF SOLIDS USING COMPUTATIONAL SOFTWARE 2019 Динамические Характеристики
A. Maksimenko
Natalia Koteneva -Csc
Natalia Perfilieva
Anastasia Borisova -Csc
N. V. Koteneva
А.С. Борисова
+ PDF Chat On the elastic energy and stress correlation in the contact between elastic solids with randomly rough surfaces 2008 B. N. J. Persson
+ A magnification-based multi-asperity (MBMA) model of rough contact where the Greenwood-Williamson and Persson theories meet 2017 Xu Guo
Benben Ma
Yichao Zhu
+ Vertical Discontinuities in Self-Affine Surfaces Lead to Multi-affinity 2002 S. J. Mitchell
+ PDF Chat Surface penalization of self-interpenetration in linear and nonlinear elasticity 2023 Stefan Krömer
Jan Valdman
+ PDF Chat Contact and friction of nanoasperities: Effects of adsorbed monolayers 2010 Shengfeng Cheng
Binquan Luan
Mark O. Robbins
+ A mechanically-derived contact model for adhesive elastic-perfectly plastic particles. Part I: Utilizing the method of dimensionality reduction 2023 William Zunker
Ken Kamrin

Works That Cite This (71)

Action Title Year Authors
+ PDF Chat Effect of Surface Roughness and Adsorbates on Superlubricity 2007 В. Н. Самойлов
Yang Chen
U. Tartaglino
B. N. J. Persson
+ Crack nucleation in the adhesive wear of an elastic-plastic half-space 2020 Lucas Frérot
Guillaume Anciaux
Jean‐François Molinari
+ Scale-dependent roughness parameters for topography analysis 2021 Antoine Sanner
Wolfram G. Nöhring
Luke A. Thimons
Tevis D. B. Jacobs
Lars Pastewka
+ PDF Chat A variational approach with embedded roughness for adhesive contact problems 2018 Marco Paggi
J. Reinoso
+ PDF Chat Contact of single asperities with varying adhesion: Comparing continuum mechanics to atomistic simulations 2006 Binquan Luan
Mark O. Robbins
+ PDF Chat Contact behaviour of simulated rough spheres generated with spherical harmonics 2020 Deheng Wei
Chongpu Zhai
Dorian Hanaor
Yixiang Gan
+ Percolation and Reynolds flow in elastic contacts of isotropic and anisotropic, randomly rough surface 2020 Anle Wang
Martin H. Müser
+ PDF Chat Normal contact and friction of rubber with model randomly rough surfaces 2014 Shintaro Yashima
Victor Romero
Élie Wandersman
Christian Frétigny
Manoj K. Chaudhury
Antoine Chateauminois
Alexis Prevost
+ PDF Chat The role of interfacial friction on the peeling of thin viscoelastic tapes 2021 Marco Ceglie
Nicola Menga
Giuseppe Carbone
+ Scale-dependent roughness parameters for topography analysis 2021 Antoine Sanner
Wolfram G. Nöhring
Luke A. Thimons
Tevis D. B. Jacobs
Lars Pastewka