Universally L 1-bad arithmetic sequences

Type: Article

Publication Date: 2011-01-01

Citations: 28

DOI: https://doi.org/10.1007/s11854-011-0006-y

Locations

  • arXiv (Cornell University) - View - PDF
  • Journal d Analyse Mathématique - View

Similar Works

Action Title Year Authors
+ Universally L^1-Bad Arithmetic Sequences 2009 Patrick LaVictoire
+ Universally L^1-Bad Arithmetic Sequences 2009 Patrick LaVictoire
+ PDF Chat Universally L 1 good sequences with gaps tending to infinity 2007 Zoltán Buczolich
+ PDF Chat On $L_{\infty}$ universally bad sequences in ergodic theory 1997 András Bíró
+ Divergent Square Averages 2005 Zoltán Buczolich
R. Daniel Mauldin
+ Uniform distribution of $αn$ modulo one for a family of integer sequences 2023 Andreas Weingartner
+ UNIVERSALLY BAD SEQUENCES IN ERGODIC THEORY 1991 Joseph Rosenblatt
+ Concepts behind divergent ergodic averages along the squares 2007 Zoltán Buczolich
R. Daniel Mauldin
+ PDF Chat Constructions of normal numbers with infinitely many digits 2024 Aafko Boonstra
Charlene Kalle
+ A unified theory of regularly varying sequences 1973 R. Bojanić
E. Seneta
+ Lower bounds on the $L_p$ discrepancy of digital NUT sequences 2019 Ralph Kritzinger
Friedrich Pillichshammer
+ Lower bounds on the $L_p$ discrepancy of digital NUT sequences 2019 Ralph Kritzinger
Friedrich Pillichshammer
+ PDF Chat Squares in a Beatty sequence and an improvement on character sums 2024 Victor Zhenyu Guo
Jinyun Qi
Mengyao Jing
+ Amicable Numbers 2009 Underwood Dudley
+ Amicable Numbers 2023
+ Amicable Numbers 2016 J. R. Barnes
+ PDF Chat ON LACUNARY ARITHMETIC STATISTICAL CONTINUITY FOR DOUBLE SEQUENCES 2017 M. M. Karagama
F. B. Ladan
+ Uniform distribution of sequences of integers 1982 Władysław Narkiewicz
+ Universally L^1 good sequences with gaps tending to infinity 2006 Zoltán Buczolich
+ A typical number is extremely non-normal 2020 Anastasios Stylianou