The least area bounded by multiples of a curve

Type: Article

Publication Date: 1984-01-01

Citations: 26

DOI: https://doi.org/10.1090/s0002-9939-1984-0727239-0

Abstract

For each positive integer <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="n"> <mml:semantics> <mml:mi>n</mml:mi> <mml:annotation encoding="application/x-tex">n</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, we construct a smooth curve <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="normal upper Gamma"> <mml:semantics> <mml:mi mathvariant="normal">Γ<!-- Γ --></mml:mi> <mml:annotation encoding="application/x-tex">\Gamma</mml:annotation> </mml:semantics> </mml:math> </inline-formula> in <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="bold upper R Superscript 4"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="bold">R</mml:mi> </mml:mrow> </mml:mrow> <mml:mn>4</mml:mn> </mml:msup> </mml:mrow> <mml:annotation encoding="application/x-tex">{{\mathbf {R}}^4}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> such that the least area of a surface (integral current) with boundary <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="n normal upper Gamma"> <mml:semantics> <mml:mrow> <mml:mi>n</mml:mi> <mml:mi mathvariant="normal">Γ<!-- Γ --></mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">n\Gamma</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is less than <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="n slash k"> <mml:semantics> <mml:mrow> <mml:mi>n</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo>/</mml:mo> </mml:mrow> <mml:mi>k</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">n/k</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of the least area of a surface with boundary <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="k normal upper Gamma left-parenthesis 1 less-than-or-slanted-equals k greater-than n right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mi>k</mml:mi> <mml:mi mathvariant="normal">Γ<!-- Γ --></mml:mi> <mml:mrow> <mml:mo>(</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mn>1</mml:mn> <mml:mo>⩽<!-- ⩽ --></mml:mo> <mml:mi>k</mml:mi> <mml:mo>&gt;</mml:mo> <mml:mi>n</mml:mi> </mml:mrow> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> <mml:annotation encoding="application/x-tex">k\Gamma \left ( {1 \leqslant k &gt; n} \right )</mml:annotation> </mml:semantics> </mml:math> </inline-formula>.

Locations

  • Proceedings of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat (𝑀,𝜀,𝛿)-minimal curve regularity 1994 Frank Morgan
+ PDF Chat A restriction theorem for space curves 1978 Elena Prestini
+ PDF Chat A geometric inequality for plane curves with restricted curvature 1976 G. D. Chakerian
H. H. Johnson
A. Vogt
+ Area enclosed by a curve 1997 Dan Pedoe
+ PDF Chat The logarithmic center of a planar region 1976 Douglas Hensley
+ Concentration of area in half-planes 2005 Roger Barnard
Clint Richardson
Alexander Yu. Solynin
+ PDF Chat Linear series with an 𝑁-fold point on a general curve 1991 David Schubert
+ Families of hypersurfaces with noncancellation property 2016 Kayo Masuda
+ PDF Chat Minimization of hypersurfaces 2023 Andreas-Stephan Elsenhans
Michael Stoll
+ 6.1 Areas between Curves 2016 Gilbert Strang
+ The area under a curve 2022 James Sneyd
Rachel M. Fewster
Duncan J. McGillivray
+ PDF Chat Secant loci of scrolls over curves 2024 George H. Hitching
+ The area within a curve 1987 M. N. Huxley
+ PDF Chat An application of the maximum principle to the geometry of plane curves 1974 Harold H. Johnson
+ Area Under a Curve 2007
+ Area Under a Curve 2007
+ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msub><mml:mi>L</mml:mi><mml:mi>p</mml:mi></mml:msub></mml:math>-dual affine surface area 2008 Wei Wang
HE Bin-wu
+ Towards a Halphen theory of linear series on curves 1999 Luca Chiantini
Ciro Ciliberto
+ Appendix F. The Area Enclosed by a Closed Curve 2011
+ Appendix F. The Area Enclosed by a Closed Curve 2003