Projects
Reading
People
Chat
SU\G
(𝔸)
/K·U
Projects
Reading
People
Chat
Sign Up
Sign In
Light
Dark
System
Rigidity for equivalence relations on homogeneous spaces
Adrian Ioana
,
Yehuda Shalom
Type:
Preprint
Publication Date:
2010-10-19
Citations:
2
View Publication
Share
Locations
arXiv (Cornell University) -
View
Similar Works
Action
Title
Year
Authors
+
Rigidity for equivalence relations on homogeneous spaces
2010
Adrian Ioana
Yehuda Shalom
+
PDF
Chat
Rigidity for equivalence relations on homogeneous spaces
2013
Adrian Ioana
Yehuda Shalom
+
Orbit equivalence rigidity
1999
Alex Furman
+
Orbit equivalence rigidity
1999
Alex Furman
+
Local rigidity for actions of Kazhdan groups on non commutative $L_p$-spaces
2015
Bachir Bekka
+
Local rigidity for actions of Kazhdan groups on non commutative $L_p$-spaces
2015
Bachir Bekka
+
Strong ergodicity, property (T), and orbit equivalence rigidity for translation actions
2014
Adrian Ioana
+
Strong ergodicity, property (T), and orbit equivalence rigidity for translation actions
2014
Adrian Ioana
+
Von Neumann Algebras and Ergodic Theory of Group Actions
2009
Dietmar Bisch
Damien Gaboriau
Vaughan F. R. Jones
Sorin Popa
+
PDF
Chat
Local rigidity for actions of Kazhdan groups on noncommutative L<sub>p</sub>-spaces
2015
Bachir Bekka
+
Measure equivalence rigidity via s-malleable deformations
2022
Daniel Drimbe
+
Twisted conjugacy and quasi-isometric rigidity of irreducible lattices in semisimple Lie groups
2018
T. Mubeena
Parameswaran Sankaran
+
PDF
Chat
Orbit Equivalence Rigidity
1999
Alex Furman
+
Some rigidity results for coinduced actions and structural results for group von Neumann algebras
2018
Daniel Drimbe
+
Rigidity results for von Neumann algebras arising from mixing extensions of profinite actions of groups on probability spaces
2019
Ionuţ Chifan
Sayan Das
+
PDF
Chat
Rigidity for group actions on homogeneous spaces by affine transformations
2016
Mohamed Bouljihad
+
Strong Rigidity for Ergodic Actions of Semisimple Lie Groups
1980
Robert J. Zimmer
+
PDF
Chat
Orbit Equivalence Rigidity for Product Actions
2019
Daniel Drimbe
+
Rigidity results for von Neumann algebras arising from mixing extensions of profinite actions of groups on probability spaces
2019
Ionuţ Chifan
Sayan Das
+
Relative Property (T) for the Subequivalence Relations Induced by the Action of SL$_2(\Bbb Z)$ on $\Bbb T^2$
2009
Adrian Ioana
Works That Cite This (2)
Action
Title
Year
Authors
+
Relative property (T) for the subequivalence relations induced by the action of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" display="inline" overflow="scroll"><mml:msub><mml:mi mathvariant="normal">SL</mml:mi><mml:mn>2</mml:mn></mml:msub><mml:mo stretchy="false">(</mml:mo><mml:mi mathvariant="double-struck">Z</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:math> on <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si2.gif" display="inline" overflow…
2010
Adrian Ioana
+
PDF
Chat
Classification and rigidity for von Neumann algebras
2013
Adrian Ioana
Works Cited by This (8)
Action
Title
Year
Authors
+
Topics in Orbit Equivalence
2004
Alexander S. Kechris
+
Amenability and exactness for dynamical systems and their 𝐶*-algebras
2002
Claire Anantharaman-Delaroche
+
PDF
Chat
An amenable equivalence relation is generated by a single transformation
1981
Alain Connes
Jacob J. Feldman
Bernard Weiss
+
PDF
Chat
On Popa's Cocycle Superrigidity Theorem
2007
Alex Furman
+
PDF
Chat
Property T for von Neumann Algebras
1985
Alain Connes
Vaughan F. R. Jones
+
PDF
Chat
Ergodic equivalence relations, cohomology, and von Neumann algebras. I
1977
Jacob J. Feldman
Calvin C. Moore
+
PDF
Chat
On a class of type II<sub>1</sub>factors with Betti numbers invariants
2006
Sorin Popa
+
Relative property (T) for the subequivalence relations induced by the action of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" display="inline" overflow="scroll"><mml:msub><mml:mi mathvariant="normal">SL</mml:mi><mml:mn>2</mml:mn></mml:msub><mml:mo stretchy="false">(</mml:mo><mml:mi mathvariant="double-struck">Z</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:math> on <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si2.gif" display="inline" overflow…
2010
Adrian Ioana