Pair excitations, collective modes, and gauge invariance in the BCS–Bose-Einstein crossover scenario

Type: Article

Publication Date: 2000-05-01

Citations: 73

DOI: https://doi.org/10.1103/physrevb.61.11662

Abstract

In this paper we study the BCS Bose-Einstein condensation (BEC) crossover scenario within the superconducting state, using a T-matrix approach which yields the ground state proposed by Leggett. Here we extend this ground state analysis to finite temperatures T and interpret the resulting physics. We find two types of bosoniclike excitations of the system: long lived, incoherent pair excitations and collective modes of the superconducting order parameter, which have different dynamics. Using a gauge invariant formalism, this paper addresses their contrasting behavior as a function of T and superconducting coupling constant g. At a more physical level, our paper emphasizes how, at finite T, BCS-BEC approaches introduce an important parameter ${\ensuremath{\Delta}}_{\mathrm{pg}}^{2}={\ensuremath{\Delta}}^{2}\ensuremath{-}{\ensuremath{\Delta}}_{\mathrm{sc}}^{2}$ into the description of superconductivity. This parameter is governed by the pair excitations and is associated with particle-hole asymmetry effects that are significant for sufficiently large g. In the fermionic regime, ${\ensuremath{\Delta}}_{\mathrm{pg}}^{2}$ represents the difference between the square of the excitation gap ${\ensuremath{\Delta}}^{2}$ and that of the superconducting order parameter ${\ensuremath{\Delta}}_{\mathrm{sc}}^{2}.$ The parameter ${\ensuremath{\Delta}}_{\mathrm{pg}}^{2},$ which is necessarily zero in the BCS (mean field) limit increases monotonically with the strength of the attractive interaction g. It follows that there is a significant physical distinction between this BCS-BEC crossover approach (in which g is the essential variable which determines ${\ensuremath{\Delta}}_{\mathrm{pg}})$ and the widely discussed phase fluctuation scenario in which the plasma frequency is the tuning parameter. Finally, we emphasize that in the strong coupling limit, there are important differences between the composite bosons that arise in crossover theories and the usual bosons of the (interacting) Bose liquid. Because of constraints imposed on the fermionic excitation gap and chemical potential, in crossover theories, the fermionic degrees of freedom can never be fully removed from consideration.

Locations

  • Physical review. B, Condensed matter - View
  • arXiv (Cornell University) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ PDF Chat Theory of superfluids with population imbalance: Finite-temperature and BCS-BEC crossover effects 2007 Qijin Chen
Yan He
Chih-Chun Chien
K. Levin
+ PDF Chat Comparative study of BCS-BEC crossover theories above<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mi>T</mml:mi><mml:mrow><mml:mi>c</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:math>: The nature of the pseudogap in ultracold atomic Fermi gases 2010 Chih-Chun Chien
Hao Guo
Yan He
K. Levin
+ PDF Chat Pseudogap state in superconductors: Extended Hartree approach to time-dependent Ginzburg-Landau theory 2003 Jelena Stajic
Andrew Iyengar
Qijin Chen
K. Levin
+ Superconductivity from a pseudogapped normal state: a mode coupling approach to precursor superconductivity 1997 Jiri Maly
Boldizsár Jankó
K. Levin
+ Leggett collective excitations in a two-band Fermi superfluid at finite temperatures 2019 S. N. Klimin
Hadrien Kurkjian
J. Tempere
+ PDF Chat Effect of the particle-hole channel on BCS–Bose-Einstein condensation crossover in atomic Fermi gases 2016 Qijin Chen
+ Generalization of BCS theory to short coherence length superconductors: A BCS--Bose-Einstein crossover scenario 2018 Qijin Chen
+ PDF Chat Cooper pair insulators and theory of correlated superconductors 2011 Predrag Nikolić
Zlatko Tešanović
+ PDF Chat Leggett Modes and the Anderson-Higgs Mechanism in Superconductors without Inversion Symmetry 2015 Nikolaj Bittner
Dietrich Einzel
Ludwig Klam
Dirk Manske
+ Generalized Cooper pairing and Bose-Einstein condensation 2003 V. C. Aguilera−Navarro
M. Fortes
M. de Llano
+ High-Tc Superconductivity via BCS and BEC Unification: A Review 2004 M. de Llano
+ PDF Chat BCS-BEC crossover at<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mi>T</mml:mi><mml:mo>=</mml:mo><mml:mn>0</mml:mn></mml:mrow></mml:math>: A dynamical mean-field theory approach 2005 Arti Garg
H. R. Krishnamurthy
Mohit Randeria
+ Superconductivity in high-<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e8516" altimg="si166.svg"><mml:msub><mml:mrow><mml:mi>T</mml:mi></mml:mrow><mml:mrow><mml:mi>c</mml:mi></mml:mrow></mml:msub></mml:math> and related strongly correlated systems from variational perspective: Beyond mean field theory 2022 J. Spałek
Maciej Fidrysiak
M. Zegrodnik
Andrzej Biborski
+ PDF Chat Temperature-driven BCS-BEC crossover and Cooper-paired metallic phase in coupled boson-fermion systems 2020 Maciej M. Maśka
Nandini Trivedi
+ A New Many-Body Wave Function for BCS-BEC Crossover in Fermi Gases: Implications for Experiment 2005 Shina Tan
K. Levin
+ Pairing Correlations and the Pseudo-Gap State: Application of the Pairing Approximation Theory 1998 Jiri Maly
Boldizsár Jankó
K. Levin
+ BEC, BCS and BCS-Bose Crossover Theories in Superconductors and Superfluids 2004 M. de Llano
Francisco J. Sevilla
M. A. Solís
J. J. Valencia
+ PDF Chat Interplay between single-particle and collective features in the boson fermion model 2004 T. Domański
J. Ranninger
+ Beyond Gaussian pair fluctuation theory for strongly interacting Fermi gases II: The broken-symmetry phase 2022 Brendan C. Mulkerin
Xing-Can Yao
Yoji Ohashi
Xia-Ji Liu
Hui Hu
+ PDF Chat Leggett modes in iron-based superconductors as a probe of time-reversal symmetry breaking 2013 Maria Grazia Marciani
Laura Fanfarillo
C. Castellani
L. Benfatto

Works That Cite This (56)

Action Title Year Authors
+ PDF Chat BCS–BEC crossover: From high temperature superconductors to ultracold superfluids 2005 Qijin Chen
Jelena Stajic
Shina Tan
K. Levin
+ PDF Chat Pseudogap phenomena in ultracold atomic Fermi gases 2014 Qijin Chen
Jibiao Wang
+ PDF Chat Unusual Thermodynamical and Transport Signatures of the BCS to Bose-Einstein Crossover Scenario below Tc 2000 Qijin Chen
Ioan Kosztin
K. Levin
+ PDF Chat Electromagnetic response of superconductors in the presence of multiple collective modes 2020 Rufus Boyack
Pedro L. e S. Lopes
+ PDF Chat Comparison of different pairing fluctuation approaches to BCS–BEC crossover 2009 K. Levin
Qijin Chen
Chih-Chun Chien
Yan He
+ PDF Chat Applying BCS–BEC crossover theory to high-temperature superconductors and ultracold atomic Fermi gases (Review Article) 2006 Qijin Chen
K. Levin
Jelena Stajic
+ PDF Chat Spin transport in cold Fermi gases: A pseudogap interpretation of spin diffusion experiments at unitarity 2011 Dan Wulin
Hao Guo
Chih-Chun Chien
K. Levin
+ PDF Chat Precursor of color superconductivity in hot quark matter 2002 Masakiyo Kitazawa
T. Koide
Teiji Kunihiro
Y. Nemoto
+ PDF Chat Evidence for Two Separate Energy Gaps in Underdoped High-Temperature Cuprate Superconductors from Broadband Infrared Ellipsometry 2008 Li Yu
D. Munzar
A. V. Boris
Petar Yordanov
Jiří Chaloupka
Th. Wolf
C. T. Lin
B. Keimer
C. Bernhard
+ PDF Chat Anderson–Bogoliubov Collective Excitations in Superfluid Fermi Gases at Nonzero Temperatures 2019 S. N. Klimin
Hadrien Kurkjian
J. Tempere

Works Cited by This (13)

Action Title Year Authors
+ PDF Chat Relationship between the pseudo- and superconducting gaps: Effects of residual pairing correlations below<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi>T</mml:mi></mml:mrow><mml:mrow><mml:mi>c</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:math> 1998 Ioan Kosztin
Qijin Chen
Boldizsár Jankó
K. Levin
+ PDF Chat Pseudogap effects induced by resonant pair scattering 1997 Boldizsár Jankó
Jiri Maly
K. Levin
+ PDF Chat Pseudogap above<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi>T</mml:mi></mml:mrow><mml:mrow><mml:mi>c</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:math>in a model with<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi>d</mml:mi></mml:mrow><mml:mrow><mml:mrow><mml:msup><mml:mrow><mml:mi>x</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msup></mml:mrow><… 1998 Jan R. Engelbrecht
Alexander Nazarenko
Mohit Randeria
Elbio Dagotto
+ PDF Chat Manifestations of the pseudogap in the boson-fermion model for Bose-Einstein-condensation-driven superconductivity 1996 J. Ranninger
Jean‐Marc Robin
+ PDF Chat Deviations from Fermi-Liquid Behavior above<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi>T</mml:mi></mml:mrow><mml:mrow><mml:mi>c</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:math>in 2D Short Coherence Length Superconductors 1995 Nandini Trivedi
Mohit Randeria
+ PDF Chat Pairing Fluctuation Theory of Superconducting Properties in Underdoped to Overdoped Cuprates 1998 Qijin Chen
Ioan Kosztin
Boldizsár Jankó
K. Levin
+ PDF Chat Unusual Superconducting State of Underdoped Cuprates 1997 Patrick A. Lee
Xiao-Gang Wen
+ Bose-Einstein to BCS crossover picture for high-T cuprates 1997 Y. J. Uemura
+ PDF Chat Superconducting transitions from the pseudogap state:<b><i>d</i></b>-wave symmetry, lattice, and low-dimensional effects 1999 Qijin Chen
Ioan Kosztin
Boldizsár Jankó
K. Levin
+ PDF Chat Superconductivity from a pseudogapped normal state: A mode-coupling approach to precursor superconductivity 1999 Jiri Maly
Boldizsár Jankó
K. Levin