Type: Article
Publication Date: 2011-12-23
Citations: 63
DOI: https://doi.org/10.1007/s00026-011-0124-3
We establish the inverse conjecture for the Gowers norm over finite fields, which asserts (roughly speaking) that if a bounded function $${f : V \rightarrow \mathbb{C}}$$ on a finite-dimensional vector space V over a finite field $${\mathbb{F}}$$ has large Gowers uniformity norm $${{\parallel{f}\parallel_{U^{s+1}(V)}}}$$ , then there exists a (non-classical) polynomial $${P: V \rightarrow \mathbb{T}}$$ of degree at most s such that f correlates with the phase e(P) = e 2πiP . This conjecture had already been established in the “high characteristic case”, when the characteristic of $${\mathbb{F}}$$ is at least as large as s. Our proof relies on the weak form of the inverse conjecture established earlier by the authors and Bergelson [3], together with new results on the structure and equidistribution of non-classical polynomials, in the spirit of the work of Green and the first author [22] and of Kaufman and Lovett [28].