On the restricted divisor function in arithmetic progressions

Type: Article

Publication Date: 2012-01-20

Citations: 6

DOI: https://doi.org/10.4171/rmi/675

Abstract

We obtain several asymptotic estimates for the sums of the restricted divisor function \tau_{M,N}(k) = \# \{1 \le m \le M, \ 1\le n \le N : mn = k\} over short arithmetic progressions, which improve some results of J. Truelsen. Such estimates are motivated by the links with the pair correlation problem for fractional parts of the quadratic function \alpha k^2 , k=1,2,\dots with a real \alpha .

Locations

  • Revista MatemĂĄtica Iberoamericana - View - PDF
  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ On the Restricted Divisor Function in Arithmetic Progressions 2010 Igor E. Shparlinski
+ On the Restricted Divisor Function in Arithmetic Progressions 2010 Igor E. Shparlinski
+ On Additive Divisor Sums and Partial Divisor Functions 2019 Kevin Smith
Julio Andrade
+ Divisor problem in arithmetic progressions modulo a prime power 2016 Kui Liu
Igor E. Shparlinski
Tianping Zhang
+ PDF Chat Correlations of the von Mangoldt and higher divisor functions II: divisor correlations in short ranges 2019 Kaisa MatomÀki
Maksym RadziwiƂƂ
Terence Tao
+ When the number of divisors is a quadratic residue 2017 Olivier BordellĂšs
+ When the number of divisors is a quadratic residue 2017 Olivier BordellĂšs
+ On a Restricted Divisor Problem 2016 Jun Furuya
Makoto Minamide
Yoshio Tanigawa
+ On Additive Divisor Sums and minorants of divisor functions 2019 Kevin M. Smith
Julio Andrade
+ Divisor problem in arithmetic progressions modulo a prime power 2017 Kui Liu
Igor E. Shparlinski
Tianping Zhang
+ On the density of primes with a set of quadratic residues or non-residues in given arithmetic progression 2013 Steve Wright
+ On the density of primes with a set of quadratic residues or non-residues in given arithmetic progression 2013 Steve Wright
+ On the mean value of the magnitude of an exponential sum involving the divisor function 2019 Mayank Pandey
+ On the distribution in the arithmetic progressions of reducible quadratic polynomials in short intervals 2000 Giovanni Coppola
Saverio Salerno
+ PDF Chat On the distribution in the arithmetic progressions of reducible quadratic polynomials in short intervals, II 2001 Giovanni Coppola
Saverio Salerno
+ The average of the divisor function over values of a quadratic polynomial 2015 Sheng‐Chi Liu
Riad Masri
+ Divisors on overlapped intervals and multiplicative functions 2017 José Manuel Rodríguez Caballero
+ Divisors on overlapped intervals and multiplicative functions 2017 José Manuel Rodríguez Caballero
+ On exponential sums involving the divisor function. 1985 Mark A. Jutila
+ PDF Chat ON THE CONVOLUTION SUMS OF CERTAIN RESTRICTED DIVISOR FUNCTIONS 2013 Daeyeoul Kim
Ae‐Ran Kim
Ayyadurai Sankaranarayanan

Works Cited by This (14)

Action Title Year Authors
+ None 2005 William D. Banks
D. R. Heath‐Brown
Igor E. Shparlinski
+ The congruence <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msub><mml:mi>x</mml:mi><mml:mn>1</mml:mn></mml:msub><mml:msub><mml:mi>x</mml:mi><mml:mn>2</mml:mn></mml:msub><mml:mo>≡</mml:mo><mml:msub><mml:mi>x</mml:mi><mml:mn>3</mml:mn></mml:msub><mml:msub><mml:mi>x</mml:mi><mml:mn>4</mml:mn></mml:msub><mml:mspace width="0.25em"/><mml:mo stretchy="false">(</mml:mo><mml:mi mathvariant="normal">mod</mml:mi><mml:mspace width="0.25em"/><mml:mi>m</mml
 2009 Todd Cochrane
Sanying Shi
+ The equation <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msub><mml:mi>x</mml:mi><mml:mn>1</mml:mn></mml:msub><mml:msub><mml:mi>x</mml:mi><mml:mn>2</mml:mn></mml:msub><mml:mo>=</mml:mo><mml:msub><mml:mi>x</mml:mi><mml:mn>3</mml:mn></mml:msub><mml:msub><mml:mi>x</mml:mi><mml:mn>4</mml:mn></mml:msub><mml:mo>+</mml:mo><mml:mi>λ</mml:mi></mml:math> in fields of prime order and applications 2008 M. Z. Garaev
V. C. Garcia
+ THE AVERAGE VALUE OF DIVISOR SUMS IN ARITHMETIC PROGRESSIONS 2007 Valentin Blomer
+ PDF Chat Distribution of modular inverses and multiples of small integers and the Sato-Tate conjecture on average 2008 Igor E. Shparlinski
+ Incomplete Kloosterman Sums and a Divisor Problem 1985 John Friedlander
Henryk Iwaniec
+ PDF Chat The distribution of spacings between the fractional parts of n 2 α 2001 Zeév Rudnick
Peter Sarnak
Alexandru Zaharescu
+ PDF Chat Divisor Problems and the Pair Correlation for the Fractional Parts of n2 2010 Jimi Lee Truelsen
+ PDF Chat Pair correlation for fractional parts of α<i>n</i><sup>2</sup> 2010 D. R. Heath‐Brown
+ An Introduction to the Theory of Numbers. By G. H. Hardy and E. M. Wright. 2nd edition. Pp. xvi, 407 25s. 1945. (Oxford) 1946 T. A. A. B.