Weak type (1,1) estimates for heat kernel maximal functions on Lie groups

Type: Article

Publication Date: 1991-01-01

Citations: 32

DOI: https://doi.org/10.1090/s0002-9947-1991-0967310-x

Abstract

For a Lie group <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper G"> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding="application/x-tex">G</mml:annotation> </mml:semantics> </mml:math> </inline-formula> with left-invariant Haar measure and associated Lebesgue spaces <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper L Superscript p Baseline left-parenthesis upper G right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mi>L</mml:mi> <mml:mi>p</mml:mi> </mml:msup> </mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mi>G</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">{L^p}(G)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, we consider the heat kernels <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="left-brace p Subscript t Baseline right-brace Subscript t greater-than 0"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo fence="false" stretchy="false">{</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>p</mml:mi> <mml:mi>t</mml:mi> </mml:msub> </mml:mrow> <mml:msub> <mml:mo fence="false" stretchy="false">}</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi>t</mml:mi> <mml:mo>&gt;</mml:mo> <mml:mn>0</mml:mn> </mml:mrow> </mml:msub> </mml:mrow> <mml:annotation encoding="application/x-tex">{\{ {p_t}\} _{t &gt; 0}}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> arising from a right-invariant Laplacian <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="normal upper Delta"> <mml:semantics> <mml:mi mathvariant="normal">Δ<!-- Δ --></mml:mi> <mml:annotation encoding="application/x-tex">\Delta</mml:annotation> </mml:semantics> </mml:math> </inline-formula> on <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper G"> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding="application/x-tex">G</mml:annotation> </mml:semantics> </mml:math> </inline-formula>: that is, <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="u left-parenthesis t comma dot right-parenthesis equals p Subscript t Baseline asterisk f"> <mml:semantics> <mml:mrow> <mml:mi>u</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>t</mml:mi> <mml:mo>,</mml:mo> <mml:mo>⋅<!-- ⋅ --></mml:mo> <mml:mo stretchy="false">)</mml:mo> <mml:mo>=</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>p</mml:mi> <mml:mi>t</mml:mi> </mml:msub> </mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo>∗<!-- ∗ --></mml:mo> </mml:mrow> <mml:mi>f</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">u(t, \cdot ) = {p_t}{\ast }f</mml:annotation> </mml:semantics> </mml:math> </inline-formula> solves the heat equation <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="left-parenthesis partial-differential slash partial-differential t minus normal upper Delta right-parenthesis u equals 0"> <mml:semantics> <mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mi mathvariant="normal">∂<!-- ∂ --></mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo>/</mml:mo> </mml:mrow> <mml:mi mathvariant="normal">∂<!-- ∂ --></mml:mi> <mml:mi>t</mml:mi> <mml:mo>−<!-- − --></mml:mo> <mml:mi mathvariant="normal">Δ<!-- Δ --></mml:mi> <mml:mo stretchy="false">)</mml:mo> <mml:mi>u</mml:mi> <mml:mo>=</mml:mo> <mml:mn>0</mml:mn> </mml:mrow> <mml:annotation encoding="application/x-tex">(\partial /\partial t - \Delta )u = 0</mml:annotation> </mml:semantics> </mml:math> </inline-formula> with initial condition <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="u left-parenthesis 0 comma dot right-parenthesis equals f left-parenthesis dot right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mi>u</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mo>⋅<!-- ⋅ --></mml:mo> <mml:mo stretchy="false">)</mml:mo> <mml:mo>=</mml:mo> <mml:mi>f</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mo>⋅<!-- ⋅ --></mml:mo> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">u(0, \cdot ) = f( \cdot )</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We establish weak-type <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="left-parenthesis 1 comma 1 right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mn>1</mml:mn> <mml:mo>,</mml:mo> <mml:mn>1</mml:mn> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">(1,1)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> estimates for the maximal operator <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="script upper M left-parenthesis script upper M f equals sup Underscript t greater-than 0 Endscripts StartAbsoluteValue p Subscript t Baseline asterisk f EndAbsoluteValue right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi class="MJX-tex-caligraphic" mathvariant="script">M</mml:mi> </mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi class="MJX-tex-caligraphic" mathvariant="script">M</mml:mi> </mml:mrow> <mml:mspace width="thickmathspace" /> <mml:mi>f</mml:mi> <mml:mo>=</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:munder> <mml:mo movablelimits="true" form="prefix">sup</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi>t</mml:mi> <mml:mo>&gt;</mml:mo> <mml:mn>0</mml:mn> </mml:mrow> </mml:munder> </mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo stretchy="false">|</mml:mo> </mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>p</mml:mi> <mml:mi>t</mml:mi> </mml:msub> </mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo>∗<!-- ∗ --></mml:mo> </mml:mrow> <mml:mi>f</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo stretchy="false">|</mml:mo> </mml:mrow> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">\mathcal {M}(\mathcal {M}\;f = {\sup _{t &gt; 0}}|{p_t}{\ast }f|)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and for related Hardy-Littlewood maximal operators in a variety of contexts, namely for groups of polynomial growth and for a number of classes of Iwasawa <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper A upper N"> <mml:semantics> <mml:mrow> <mml:mi>A</mml:mi> <mml:mi>N</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">AN</mml:annotation> </mml:semantics> </mml:math> </inline-formula> groups. We also study the "local" maximal operator <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="script upper M 0 left-parenthesis script upper M 0 f equals sup Underscript 0 greater-than t greater-than 1 Endscripts StartAbsoluteValue p Subscript t Baseline asterisk f EndAbsoluteValue right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi class="MJX-tex-caligraphic" mathvariant="script">M</mml:mi> </mml:mrow> <mml:mn>0</mml:mn> </mml:msub> </mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi class="MJX-tex-caligraphic" mathvariant="script">M</mml:mi> </mml:mrow> <mml:mn>0</mml:mn> </mml:msub> </mml:mrow> <mml:mi>f</mml:mi> <mml:mo>=</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:munder> <mml:mo movablelimits="true" form="prefix">sup</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mn>0</mml:mn> <mml:mo>&gt;</mml:mo> <mml:mi>t</mml:mi> <mml:mo>&gt;</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:munder> </mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo stretchy="false">|</mml:mo> </mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>p</mml:mi> <mml:mi>t</mml:mi> </mml:msub> </mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo>∗<!-- ∗ --></mml:mo> </mml:mrow> <mml:mi>f</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo stretchy="false">|</mml:mo> </mml:mrow> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">{\mathcal {M}_0}({\mathcal {M}_0}f = {\sup _{0 &gt; t &gt; 1}}|{p_t}{\ast }f|)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and related Hardy-Littlewood operators for all Lie groups.

Locations

  • Transactions of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ Weak Type (1, 1) Estimates for Heat Kernel Maximal Functions on Lie Groups 1991 Michael Cowling
Garth I. Gaudry
Saverio Giulini
Giancarlo Mauceri
+ The heat kernel on unimodular Lie groups 1993 N. Th. Varopoulos
Laurent Saloff‐Coste
Thierry Coulhon
+ On the 𝐿²→𝐿^{∞} norms of spectral multipliers of “quasi-homogeneous” operators on homogeneous groups 1999 Adam Sikora
+ A gradient estimate for the heat semi-group without hypoellipticity assumptions 2015 Thomas Cass
Christian Litterer
+ PDF Chat Nontangential maximal functions over compact Riemannian manifolds 1988 Brian E. Blank
+ PDF Chat On a maximal function on compact Lie groups 1989 Michael Cowling
Christopher Meaney
+ PDF Chat HEAT KERNEL ANALYSIS ON INFINITE DIMENSIONAL GROUPS 2005 Maria Gordina
+ PDF Chat The heat kernel on Lie groups 1996 N. Th. Varopoulos
+ Atomic and Maximal Hardy Spaces on a Lie Group of Exponential Growth 2012 Maria Vallarino
+ PDF Chat 𝐿^{𝑝} norms of certain kernels of the 𝑁-dimensional torus 1981 Leonardo Colzani
Paolo M. Soardi
+ Gradient Estimates for the Heat Kernels in Higher Dimensional Heisenberg Groups 2010 Qian Qian
+ Large time estimates for heat kernels in nilpotent Lie groups 2002 Camillo Melzi
+ Heat kernel estimates for <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" display="inline" overflow="scroll"><mml:mi>Δ</mml:mi><mml:mo>+</mml:mo><mml:msup><mml:mrow><mml:mi>Δ</mml:mi></mml:mrow><mml:mrow><mml:mi>α</mml:mi><mml:mo>/</mml:mo><mml:mn>2</mml:mn></mml:mrow></mml:msup></mml:math> under gradient perturbation 2015 Zhen-Qing Chen
Eryan Hu
+ Homogeneous algebras via heat kernel estimates 2022 Tommaso Bruno
+ Heat kernels on metric measure spaces and an application to semilinear elliptic equations 2003 Alexander Grigor’yan
Jiaxin Hu
Ka‐Sing Lau
+ Estimates Of Heat Kernel Derivatives In Vector Bundles 2007 Martin N. Ndumu
+ The Heat Kernel on Riemannian Manifolds and Lie Groups 1984 Teresa Arede
+ PDF Chat A Sobolev estimate for radial 𝐿^{𝑝}-multipliers on a class of semi-simple Lie groups 2023 Martijn Caspers
+ Convolution powers on finitely generated groups 1993 N. Th. Varopoulos
Laurent Saloff‐Coste
Thierry Coulhon
+ Weak Type L 1 Estimates for Maximal Functions on Non-Compact Symmetric Spaces 1981 Jan-Olov Strömberg