On the sum $\sum\limits_{n \leqq x} {\frac{{\tilde n}} {{n^2 }}}$

Type: Article

Publication Date: 1971-01-01

Citations: 3

DOI: https://doi.org/10.3792/pja/1195520107

Locations

  • Proceedings of the Japan Academy Series A Mathematical Sciences - View - PDF

Similar Works

Action Title Year Authors
+ On the sum \(\sum_{n \geq x} \{f(\frac{x}{n})\}\) 2017 M. Kalecki
+ PDF Chat On the function $\sum_{n=0}^\infty \frac{\zeta(n+2)}{n!}x^n$ 1977 Jonathan Benjamin Tennenbaum
+ On ${\rm CH}+2^{\aleph_1}\to(\alpha)^2_2$ for $\alpha<\omega_2$ 1993 Saharon Shelah
+ PDF Chat On the First Time $|S_n| \geq cn^{\frac {1}{2} {(1)}$ 1970 Michael Woodroofe
+ PDF Chat On the functional equation $\sum^{p}_{i=0}\,a_{i}f_{i}^{n_{}i}=1$ 1971 Nobushige Toda
+ On the form $$\mathop \Sigma \limits_{r = 1}^n $$ p r dq r — Hdtp r dq r — Hdt 1935 K. Nagabhushanam
+ PDF Chat On summation formula for $S=\frac{h}{\sqrt \pi} sum_{k=-n}^{+n} e^{-h^2k^2}$ 1924 Miloš Kössler
+ On the sum ∑d(n)σα(n+N) 1990 U. Balakrishnan
Jyoti Sengupta
+ PDF Chat On an application of the expression $\alpha^n+\beta^n$ 1962 Václav Vodička
+ On the equation $p \frac{\Gamma(\frac{n}{2}-\frac{s}{p-1})Γ(s+\frac{s}{p-1})}{Γ(\frac{s}{p-1})Γ(\frac{n-2s}{2}-\frac{s}{p-1})} =\frac{\Gamma(\frac{n+2s}{4})^2}{Γ(\frac{n-2s}{4})^2}$ 2016 Senping Luo
Juncheng Wei
Wenming Zou
+ On the Average Order of the Sum $\sum_{p≦x}(\frac{p}{q})$ (数論的関数の特性) 1976 三郎 内山
+ PDF Chat On the average order of the function $E(x) = \sum\limits_{n \leqslant x} {\phi (n) - \frac{{3x^2 }}{{\pi ^2 }}} $ 1972 D. Suryanarayana
R. Sitaramachandra Rao
+ Über die Reihe $$\sum\limits_{n = 0}^\infty {q^{n^2 } x^n \cdot } $$ 1920 Alexander Ostrowski
+ On the sum Σ d |2 n −1d −1 1971 P. Erdős
+ Series$\mathop {\lim }\limits_{n \to \infty } n$: 2022
+ On the equation $$\Delta u + K\left( x \right)u^{\frac{{n + 2}}{{n - 2}} \pm \varepsilon ^2 } = 0$$ inR ninR n 1995 Xuefeng Wang
Juncheng Wei
+ Werte von $${\pi}^{x}, \frac{{\pi}^{x}}{{n}!}, (n = 0-16)$$ 1930 Keiichi Hayashi
+ PDF Chat Note sur la série $\sum_{n=1}^{\infty} \frac{x^n}{n^s}$ 1889 A. Jonquière
+ On the equation $\phi(\sum x_i)=\sum \alpha_{ij} \phi(x_i)g(x_j)$ 2022 Halina Światak
+ PDF Chat A propos de la série $\sum\limits_{n = 1}^{+ \infty} \frac{x^n}{q^n - 1}$ 1996 Daniel Duverney

Works Cited by This (0)

Action Title Year Authors