Finite-time blow-up of L∞-weak solutions of an aggregation equation

Type: Article

Publication Date: 2010-01-01

Citations: 77

DOI: https://doi.org/10.4310/cms.2010.v8.n1.a4

Abstract

We consider the aggregation equation utWe assume that K is rotationally invariant, nonnegative, decaying at infinity, with at worst a Lipschitz point at the origin.We prove existence, uniqueness, and continuation of solutions.Finite time blow-up (in the L ∞ norm) of solutions is proved when the kernel has precisely a Lipschitz point at the origin.

Locations

  • Communications in Mathematical Sciences - View - PDF
  • CiteSeer X (The Pennsylvania State University) - View - PDF
  • Project Euclid (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ Finite-Time Blow-up of Solutions of an Aggregation Equation in R n 2007 Andrea L. Bertozzi
Thomas Laurent
+ PDF Chat Uniform in Time L ∞ $L^{\infty }$ -Estimates for Nonlinear Aggregation-Diffusion Equations 2018 José A. Carrillo
Jinhuan Wang
+ PDF Chat Stationary states of aggregation-diffusion equations with compactly supported attraction kernels: radial symmetry and mass-independent boundedness 2024 Roumen Anguelov
Chelsea Bright
+ PDF Chat Ground states in the diffusion-dominated regime 2018 José A. Carrillo
Franca Hoffmann
Edoardo Mainini
Bruno Volzone
+ PDF Chat Nonlinear aggregation-diffusion equations: radial symmetry and long time asymptotics 2019 José A. Carrillo
Sabine Hittmeir
Bruno Volzone
Yao Yao
+ PDF Chat Blow-up in multidimensional aggregation equations with mildly singular interaction kernels 2009 Andrea L. Bertozzi
José A. Carrillo
Thomas Laurent
+ Nonlinear Aggregation-Diffusion Equations: Radial Symmetry and Long Time Asymptotics 2016 José A. Carrillo
Sabine Hittmeir
Bruno Volzone
Yao Yao
+ Infinite-time concentration in aggregation–diffusion equations with a given potential 2021 José A. Carrillo
David Gómez‐Castro
Juan Luís Vázquez
+ Ground States in the Diffusion-Dominated Regime 2017 José A. Carrillo
Franca Hoffmann
Edoardo Mainini
Bruno Volzone
+ Ground States in the Diffusion-Dominated Regime 2017 José A. Carrillo
Franca Hoffmann
Edoardo Mainini
Bruno Volzone
+ Blow-up rate for a nonlinear diffusion equation 2006 Sining Zheng
Wei Wang
+ Blowup in diffusion equations: A survey 1998 Catherine Bandle
Hermann Brunner
+ Viscosity solutions and analysis in L∞ 1999 E. N. Barron
+ A blow-up result for nonlinear diffusion equations 1989 Марек Фила
Ján Filo
+ Blow-up analysis for a nonlinear diffusion system 2004 Xianfa Song
Sining Zheng
Zhaoxin Jiang
+ FINITE TIME BLOWUP AND LIFE SPAN OF A NONAUTONOMOUS SEMILINEAR EQUATION 2006 Ekaterina T. Kolkovska
José Alfredo López-Mimbela
Aroldo Pérez
+ PDF Chat Stability of solutions to aggregation equation in bounded domains 2013 Rafał Celiński
+ PDF Chat Refined blow-up behavior for reaction-diffusion equations with non scale invariant exponential nonlinearities 2025 Loth Damagui Chabi
+ Comparison results and steady states for the Fujita equation with fractional Laplacian 2003 Matthias Birkner
José Alfredo López-Mimbela
Anton Wakolbinger
+ Infinite-time concentration in Aggregation--Diffusion equations with a given potential. 2021 José A. Carrillo
David Gómez‐Castro
Juan Luís Vázquez