Rankin-Selberg L-functions in the level aspect

Type: Article

Publication Date: 2002-07-15

Citations: 207

DOI: https://doi.org/10.1215/s0012-7094-02-11416-1

Abstract

In this paper we calculate the asymptotics of various moments of the central values of Rankin-Selberg convolution L-functions of large level, thus generalizing the results and methods of W. Duke, J. Friedlander, and H. Iwaniec and of the authors. Consequences include convexity-breaking bounds, nonvanishing of a positive proportion of central values, and linear independence results for certain Hecke operators.

Locations

  • Duke Mathematical Journal - View
  • CiteSeer X (The Pennsylvania State University) - View - PDF
  • Infoscience (Ecole Polytechnique Fédérale de Lausanne) - View - PDF

Similar Works

Action Title Year Authors
+ Nonvanishing of the Central Value of the Rankin-Selberg L-functions 2005 Dihua Jiang
+ PDF Chat The Central value of the Rankin–Selberg L-Functions 2009 Xiaoqing Li
+ Erratum to "On the Non-vanishing of the Central Value of the Rankin-Selberg L-functions" 2019 David Ginzburg
Dihua Jiang
Baiying Liu
Stephen Rallis
+ The central value of the Rankin-Selberg $L$-functions 2008 Xiaoqing Li
+ H. Weyl’s Asymptotics and Rankin Convolutions 2005 А. И. Виноградов
+ On the nonvanishing of the central value of the Rankin-Selberg L-functions II 2005 David Ginzburg
Dihua Jiang
Stephen Rallis
+ Large oscillations of the argument of Rankin–Selberg L-functions 2023 Xuanxuan Xiao
Qiyu Yang
+ On the asymptotics of coefficients of Rankin–Selberg L-functions 2023 Huixue Lao
Hongtu Zhu
+ Moments and Non-vanishing of central values of Quadratic Hecke $L$-functions in the Gaussian Field 2020 Peng Gao
+ Stable averages of central values of Rankin–Selberg L -functions: Some new variants 2013 Paul D. Nelson
+ Stable averages of central values of Rankin-Selberg L-functions: some new variants 2012 Paul D. Nelson
+ Rankin-Selberg convolutions for 𝑆𝑂_{2𝑙+1}×𝐺𝐿_{𝑛}: local theory 1993 David Soudry
+ PDF Chat Moments and non-vanishing of central values of quadratic Hecke L-functions in the Gaussian field 2024 Peng Gao
+ Stable averages of central values of Rankin-Selberg L-functions: some new variants 2012 Paul D. Nelson
+ PDF Chat Moments and One level density of certain unitary families of Hecke<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>L</mml:mi></mml:math>-functions 2021 Peng Gao
Liangyi Zhao
+ Special L-values of Rankin-Selberg convolutions 1999 Wenzhi Luo
+ Rankin-Selberg L-functions on the critical line 2005 Valentin Blomer
+ PDF Chat Low lying zeros of Rankin-Selberg L-functions 2023 Alexander S. Shashkov
+ High moments of L-functions 2019 Vorrapan Chandee
+ Moments and non-vanishing of Hecke $L$-functions with quadratic characters in $\mathbb{Q}(i)$ at the central point 2017 Peng Gao
Liangyi Zhao