Wavelets generated by using discrete singular convolution kernels

Type: Article

Publication Date: 2000-11-21

Citations: 105

DOI: https://doi.org/10.1088/0305-4470/33/47/317

Locations

  • Journal of Physics A Mathematical and General - View

Similar Works

Action Title Year Authors
+ Applicability of Continuous, Stationary, and Discrete Wavelet Transforms in Engineering Signal Processing 2021 Chen Guan
Kaiqi Li
Yong Liu
+ Square-like Functions Generated by a Composite Wavelet Transform 2010 Ilham A. Aliev
Simten Bayrakçı
+ Teoría de Wavelets y Aplicaciones 2008 Alicia Romo
+ Singular integrals, scale-space and wavelet transforms 2013 Say Song Goh
Tim N.T. Goodman
S. L. Lee
+ Wavelets 2014 Christopher R. Genovese
+ Construcción de wavelets basados en polinomios ortogonales clásicos y aplicaciones 2005 María Moncayo Hormigo
+ PDF Chat Wavelets biortogonais 2012 Margarete Oliveira Domingues
Magda Kimico Kaibara
+ Generalized wavelet transform based on the convolution operator in the linear canonical transform domain 2014 Deyun Wei
Yuanmin Li
+ Utilización de bases wavelet para la resolución numérica de ecuaciones diferenciales 2021 Lucila Daniela Calderón
+ Fractional Wavelet Packet Transformations Involving Hankel-Clifford Integral Transformations 2016 Akhilesh Akhilesh
Prasad
Sumant
Kumar
+ Discrete wavelet transformations 2019 Van Fleet
J Patrick
+ Morlet wavelet transform using attenuated sliding Fourier transform and kernel integral for graphic processing unit 2021 Yukihiko Yamashita
Toru Wakahar
+ Wavelet-like decomposition based on filtering in domains of discrete trigonometric transforms : case study 2011 R. Korohoda
A. Dąbrowski
+ A Comprehensive Survey on Fractional Fourier Transform 2017 Yudong Zhang
Shuihua Wang‎
Jianfei Yang
Zheng Zhang
Preetha Phillips
Ping Sun
Jie Yan
+ Wavelet Transformation Associated with Second Hankel–Clifford Transformation 2015 Akhilesh Prasad
Sumant Kumar
+ The Wavelet Transforms 2017 Lokenath Debnath
Firdous A. Shah
+ Novel fractional wavelet transform: Principles, MRA and application 2020 Yong Guo
Bing‐Zhao Li
Lidong Yang
+ Special Wavelets Based on Chebyshev Polynomials of the Second Kind and their Approximative Properties 2016 М. С. Султанахмедов
+ An Estimation of Singular Values of Convolution Operators 1995 Milutin R. Dostanić
+ Wavelets 1920 Peter Nickolas