Cyclic Stickelberger cohomology and descent of Kummer extensions

Type: Article

Publication Date: 1984-01-01

Citations: 7

DOI: https://doi.org/10.1090/s0002-9939-1984-0733396-2

Abstract

Let <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper R"> <mml:semantics> <mml:mi>R</mml:mi> <mml:annotation encoding="application/x-tex">R</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be a field, <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper S equals upper R left-bracket zeta right-bracket"> <mml:semantics> <mml:mrow> <mml:mi>S</mml:mi> <mml:mo>=</mml:mo> <mml:mi>R</mml:mi> <mml:mo stretchy="false">[</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi>ζ<!-- ζ --></mml:mi> </mml:mrow> </mml:mrow> <mml:mo stretchy="false">]</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">S = R[{\rm {\zeta }}]</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="zeta"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi>ζ<!-- ζ --></mml:mi> </mml:mrow> </mml:mrow> <mml:annotation encoding="application/x-tex">{\rm {\zeta }}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> an <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="n"> <mml:semantics> <mml:mi>n</mml:mi> <mml:annotation encoding="application/x-tex">n</mml:annotation> </mml:semantics> </mml:math> </inline-formula>th root of unit, <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="normal upper Delta equals normal upper G normal a normal l left-parenthesis upper S slash upper R right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mi mathvariant="normal">Δ<!-- Δ --></mml:mi> <mml:mo>=</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="normal">G</mml:mi> <mml:mi mathvariant="normal">a</mml:mi> <mml:mi mathvariant="normal">l</mml:mi> <mml:mo stretchy="false">(</mml:mo> </mml:mrow> </mml:mrow> <mml:mi>S</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo>/</mml:mo> </mml:mrow> <mml:mi>R</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">\Delta = {\rm {Gal(}}S/R)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. The group of cyclic Kummer extensions of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper S"> <mml:semantics> <mml:mi>S</mml:mi> <mml:annotation encoding="application/x-tex">S</mml:annotation> </mml:semantics> </mml:math> </inline-formula> on which <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="normal upper Delta"> <mml:semantics> <mml:mi mathvariant="normal">Δ<!-- Δ --></mml:mi> <mml:annotation encoding="application/x-tex">\Delta</mml:annotation> </mml:semantics> </mml:math> </inline-formula> acts, modulo those which descend to <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper R"> <mml:semantics> <mml:mi>R</mml:mi> <mml:annotation encoding="application/x-tex">R</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, is isomorphic to a group of roots of unity and to a second group cohomology group of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="normal upper Delta"> <mml:semantics> <mml:mi mathvariant="normal">Δ<!-- Δ --></mml:mi> <mml:annotation encoding="application/x-tex">\Delta</mml:annotation> </mml:semantics> </mml:math> </inline-formula> whose definition involves a "Stickelberger element".

Locations

  • Proceedings of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ Class groups of Kummer extensions via cup products in Galois cohomology 2018 Karl Schaefer
Eric Stubley
+ PDF Chat Cyclic Stickelberger Cohomology and Descent of Kummer Extensions 1984 Lindsay N. Childs
+ PDF Chat Finite generation of Tate cohomology 2011 Jon Carlson
Sunil K. Chebolu
Ján Mináč
+ On the tail of Jones polynomials of closed braids with a full twist 2013 Abhijit Champanerkar
Ilya Kofman
+ PDF Chat Steinitz classes of cyclic extensions of degree 𝑙^{𝑟} 1975 Robert Landis Long
+ PDF Chat On the top-dimensional cohomology of arithmetic Chevalley groups 2024 Benjamin Brück
Yuri Santos Rêgo
Robin Sroka
+ Cartier modules and cyclotomic spectra 2020 Benjamin Antieau
Thomas Nikolaus
+ Resultants and Chow forms via exterior syzygies 2003 David Eisenbud
Frank–Olaf Schreyer
Jerzy Weyman
+ Hilbert schemes, polygraphs and the Macdonald positivity conjecture 2001 Mark Haiman
+ 𝐺₀ of a graded ring 1972 Leslie G. Roberts
+ PDF Chat A Chern character in cyclic homology 1992 Luca Q. Zamboni
+ Breuil–Kisin modules via crystalline cohomology 2017 Bryden Cais
Tong Liu
+ Asymptotic periodicity of grade associated to multigraded modules 2011 Futoshi Hayasaka
+ PDF Chat Newforms mod 𝑝 in squarefree level with applications to Monsky’s Hecke-stable filtration 2019 Shaunak V. Deo
Anna Medvedovsky
+ PDF Chat Cohomology ring of tree braid groups and exterior face rings 2022 Jesús González
Teresa I. Hoekstra-Mendoza
+ Algebra of Borcherds products 2021 Shouhei Ma
+ PDF Chat On 𝑝-torsion in etale cohomology and in the Brauer group 1980 Robert Treger
+ PDF Chat The cohomology of 𝐵𝑆𝑂_{𝑛} and 𝐵𝑂_{𝑛} with integer coefficients 1982 Edgar H. Brown
+ Cyclic Extensions with Prescribed Ramification 2003 Georges Gras
+ PDF Chat Jordan decompositions of cocenters of reductive 𝑝-adic groups 2019 Xuhua He
Ju-Lee Kim