Type: Article
Publication Date: 1984-01-01
Citations: 7
DOI: https://doi.org/10.1090/s0002-9939-1984-0733396-2
Let <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper R"> <mml:semantics> <mml:mi>R</mml:mi> <mml:annotation encoding="application/x-tex">R</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be a field, <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper S equals upper R left-bracket zeta right-bracket"> <mml:semantics> <mml:mrow> <mml:mi>S</mml:mi> <mml:mo>=</mml:mo> <mml:mi>R</mml:mi> <mml:mo stretchy="false">[</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi>ζ<!-- ζ --></mml:mi> </mml:mrow> </mml:mrow> <mml:mo stretchy="false">]</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">S = R[{\rm {\zeta }}]</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="zeta"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi>ζ<!-- ζ --></mml:mi> </mml:mrow> </mml:mrow> <mml:annotation encoding="application/x-tex">{\rm {\zeta }}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> an <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="n"> <mml:semantics> <mml:mi>n</mml:mi> <mml:annotation encoding="application/x-tex">n</mml:annotation> </mml:semantics> </mml:math> </inline-formula>th root of unit, <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="normal upper Delta equals normal upper G normal a normal l left-parenthesis upper S slash upper R right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mi mathvariant="normal">Δ<!-- Δ --></mml:mi> <mml:mo>=</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="normal">G</mml:mi> <mml:mi mathvariant="normal">a</mml:mi> <mml:mi mathvariant="normal">l</mml:mi> <mml:mo stretchy="false">(</mml:mo> </mml:mrow> </mml:mrow> <mml:mi>S</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo>/</mml:mo> </mml:mrow> <mml:mi>R</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">\Delta = {\rm {Gal(}}S/R)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. The group of cyclic Kummer extensions of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper S"> <mml:semantics> <mml:mi>S</mml:mi> <mml:annotation encoding="application/x-tex">S</mml:annotation> </mml:semantics> </mml:math> </inline-formula> on which <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="normal upper Delta"> <mml:semantics> <mml:mi mathvariant="normal">Δ<!-- Δ --></mml:mi> <mml:annotation encoding="application/x-tex">\Delta</mml:annotation> </mml:semantics> </mml:math> </inline-formula> acts, modulo those which descend to <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper R"> <mml:semantics> <mml:mi>R</mml:mi> <mml:annotation encoding="application/x-tex">R</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, is isomorphic to a group of roots of unity and to a second group cohomology group of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="normal upper Delta"> <mml:semantics> <mml:mi mathvariant="normal">Δ<!-- Δ --></mml:mi> <mml:annotation encoding="application/x-tex">\Delta</mml:annotation> </mml:semantics> </mml:math> </inline-formula> whose definition involves a "Stickelberger element".