Causal Inference without Balance Checking: Coarsened Exact Matching

Type: Article

Publication Date: 2011-08-25

Citations: 2985

DOI: https://doi.org/10.1093/pan/mpr013

View Chat PDF

Abstract

We discuss a method for improving causal inferences called “Coarsened Exact Matching” (CEM), and the new “Monotonic Imbalance Bounding” (MIB) class of matching methods from which CEM is derived. We summarize what is known about CEM and MIB, derive and illustrate several new desirable statistical properties of CEM, and then propose a variety of useful extensions. We show that CEM possesses a wide range of statistical properties not available in most other matching methods but is at the same time exceptionally easy to comprehend and use. We focus on the connection between theoretical properties and practical applications. We also make available easy-to-use open source software for R, Stata , and SPSS that implement all our suggestions.

Locations

  • Political Analysis - View
  • Archivio Istituzionale della Ricerca (Universita Degli Studi Di Milano) - View - PDF

Similar Works

Action Title Year Authors
+ Matching for Causal Inference Without Balance Checking 2008 Stefano M. Iacus
Gary King
Giuseppe Porro
+ PDF Chat Multivariate Matching Methods That Are Monotonic Imbalance Bounding 2011 Stefano M. Iacus
Gary King
Giuseppe Porro
+ Matching for Causal Inference Without Balance Checking 2008 Stefano M. Iacus
Gary King
Giuseppe Porro
+ Matching for Causal Inference Without Balance Checking 2008 Stefano M. Iacus
Gary King
Giuseppe Porro
+ Multivariate matching methods that are monotonic imbalance bounding 2009 Stefano M. Iacus
Gary King
Giuseppe Porro
+ Multivariate Matching Methods That are Monotonic Imbalance Bounding 2009 Stefano M. Iacus
Gary King
Giuseppe Porro
+ <b>cem</b>: Software for Coarsened Exact Matching 2009 Stefano M. Iacus
Gary King
Giuseppe Porro
+ CEM: Coarsened Exact Matching in Stata 2010 Matthew Blackwell
Stefano M. Iacus
Gary King
Giuseppe Porro
+ CEM: Coarsened Exact Matching in Stata 2010 Matthew Blackwell
Stefano M. Iacus
Gary King
Giuseppe Porro
+ PDF Chat Cem: Coarsened Exact Matching in Stata 2009 Matthew Blackwell
Stefano M. Iacus
Gary King
Giuseppe Porro
+ Causal Inference and Coarsened Exact Matching in Real-world Study 2019 Di Zhu
Bao Liu
+ CEM: STATA MODULE TO PERFORM COARSENED EXACT MATCHING. 2008 Matthew Blackwell
Stefano M. Iacus
Gary King
Giuseppe Porro
+ The Trouble with Coarsened Exact Matching 2020 Bernard S. Black
Parth Lalkiya
Joshua Lerner
+ CEM: Stata module to perform Coarsened Exact Matching 2010 Matthew Blackwell
Stefano M. Iacus
Gary King
Giuseppe Porro
+ Valid Inference after Causal Discovery 2022 Paula Gradu
Tijana Zrnic
Zhaoran Wang
Michael I. Jordan
+ PDF Chat Matched Sampling for Causal Effects 2008 Angie Wade
+ An introduction to matching methods for causal inference and their implementation in Stata 2010 Barbara Sianesi
+ An introduction to matching methods for causal inference and their implementation in Stata 2010 Barbara Sianesi
+ Matched Sampling for Causal Effects 2006 Donald B. Rubin
+ <b>MatchIt</b>: Nonparametric Preprocessing for Parametric Causal Inference 2011 Daniel E. Ho
Kosuke Imai
Gary King
Elizabeth A. Stuart

Cited by (274)

Action Title Year Authors
+ Differentiated matching for individual and average treatment effect estimation 2022 Ziyu Zhao
Kun Kuang
Bo Li
Peng Cui
Runze Wu
Jun Xiao
Fei Wu
+ PDF Chat New multivariate tests for assessing covariate balance in matched observational studies 2020 Hao Chen
Dylan S. Small
+ COVID-19 vaccinations and mental health among U.S. adults: Individual and spillover effects 2023 Rebekah Levine Coley
Naoka Carey
Christopher F. Baum
Summer Sherburne Hawkins
+ PDF Chat The preeminence of ethnic diversity in scientific collaboration 2018 Bedoor AlShebli
Talal Rahwan
Wei Lee Woon
+ PDF Chat Evaluating the Utility of Coarsened Exact Matching for Pharmacoepidemiology Using Real and Simulated Claims Data 2019 John Ripollone
Krista F. Huybrechts
Kenneth J. Rothman
Ryan Ferguson
Jessica M. Franklin
+ PDF Chat Informational value of visual nudges during crises: Improving public health outcomes through social media engagement amid COVID‐19 2023 Anton Ivanov
Zhasmina Tacheva
Abdullatif Alzaidan
Sebastián Souyris
Albert C. England
+ Causal Effect Estimation: Recent Progress, Challenges, and Opportunities 2023 Zhixuan Chu
Sheng Li
+ Causal Effect Estimation: Basic Methodologies 2023 Liuyi Yao
Zhixuan Chu
Yaliang Li
Jing Gao
Aidong Zhang
Sheng Li
+ Employment and Training Programs 2015 Burt S. Barnow
Jeffrey A. Smith
+ Case Selection via Matching 2014 Richard A. Nielsen
+ An Illustrative Example of Propensity Score Matching with Education Research 2012 F. Lane
Yen M. To
Kyna Shelley
Robin K. Henson
+ A Survey on Causal Inference 2020 Liuyi Yao
Zhixuan Chu
Sheng Li
Yaliang Li
Jing Gao
Aidong Zhang
+ FLAME: A Fast Large-scale Almost Matching Exactly Approach to Causal Inference 2017 Sudeepa Roy
Cynthia Rudin
Alexander Volfovsky
Tianyu Wang
+ Mutual information based matching for causal inference with observational data 2016 Лэй Сун
Alexander Nikolaev
+ Is My Matched Dataset As-If Randomized, More, Or Less? Unifying the Design and Analysis of Observational Studies 2018 Zach Branson
+ Comparing Covariate Prioritization via Matching to Machine Learning Methods for Causal Inference using Five Empirical Applications 2018 Luke Keele
Dylan S. Small
+ Interpretable Almost Matching Exactly for Causal Inference 2018 Yameng Liu
Aw Dieng
Sudeepa Roy
Cynthia Rudin
Alexander Volfovsky
+ PDF Chat Multigroup Propensity Score Approach to Evaluating an Effectiveness Trial of the New Beginnings Program 2018 Jenn‐Yun Tein
Gina L. Mazza
Heather J. Gunn
Hanjoe Kim
Elizabeth A. Stuart
Irwin N. Sandler
Sharlene A. Wolchik
+ Using Mixed Integer Programming for Matching in an Observational Study of Kidney Failure After Surgery 2012 José R. Zubizarreta
+ An optimal cluster-based approach for Subgroup Analysis using Information Complexity Criterion 2011 Ida D’Attoma
N.A. Attoma
Caterina Liberati
+ PDF Chat Improving Causal Inference in Observational Studies: Propensity Score Matching 2019 Min Yu
Dae Ryong Kang
+ Uncertain Neighbors: Bayesian Propensity Score Matching For Causal Inference 2021 R. Michael Alvarez
Inés Levin
+ PDF Chat Forecasting change in conflict fatalities with dynamic elastic net 2022 Fulvio Attinà
Marcello Carammia
Stefano M. Iacus
+ How to Measure Your App: A Couple of Pitfalls and Remedies in Measuring App Performance in Online Controlled Experiments 2020 Yuxiang Xie
Meng Xu
Evan Chow
Xiaolin Shi
+ Optimal full matching for survival outcomes: a method that merits more widespread use 2015 Peter C. Austin
Elizabeth A. Stuart
+ Training and job search assistance programmes in Spain: The case of long-term unemployed 2019 Maite Blázquez
Ainhoa Herrarte Sánchez
Felipe Sáez
+ Causal Effect of Self-esteem on Cigarette Smoking Stages in Adolescents: Coarsened Exact Matching in a Longitudinal Study 2016 Ahmad Khosravi
Asghar Mohammadpoorasl
Kourosh Holakouie-Naieni
Mahmood Mahmoodi
Ali A. Pouyan
Mohammad Alì Mansournia
+ Choosing the Estimand When Matching or Weighting in Observational Studies 2021 Noah Greifer
Elizabeth A. Stuart
+ Evaluation of a Flemish Active Labour Market Policy in the framework of the European Social Fund. Results and challenges 2023 Giulia Canzian
Elena Claudia Meroni
Giulia Santangelo
+ PDF Chat The performance of inverse probability of treatment weighting and full matching on the propensity score in the presence of model misspecification when estimating the effect of treatment on survival outcomes 2015 Peter C. Austin
Elizabeth A. Stuart
+ Comparative Effectiveness of Matching Methods for Causal Inference 2011 Gary King
Richard A. Nielsen
Carter Coberley
James E. Pope
Aaron Wells
+ PDF Chat Evaluation of education and training impacts for the unemployed: Challenges of new data 2020 Augusto Cerqua
Peter Urwin
Dave Thomson
David Bibby
+ PDF Chat The Comparison of Matching Methods Using Different Measures of Balance: Benefits and Risks Exemplified within a Study to Evaluate the Effects of German Disease Management Programs on Long‐Term Outcomes of Patients with Type 2 Diabetes 2016 Birgit Fullerton
Boris Pöhlmann
Robert Krohn
John Adams
Ferdinand M. Gerlach
Antje Erler
+ The role of covariate balance in observational studies 2017 Jason J. Sauppe
Sheldon H. Jacobson
+ Causal Inference Methods: Lessons from Applied Microeconomics 2018 Laura Dague
Joanna Lahey
+ PDF Chat Logistic regression frequently outperformed propensity score methods, especially for large datasets: a simulation study 2022 Jack Wilkinson
Mamas A. Mamas
Evangelos Kontopantelis
+ PDF Chat Visual Pruner: Visually guided cohort selection for observational studies 2015 Lauren R. Samuels
Robert A. Greevy
+ PDF Chat Mahalanobis balancing: A multivariate perspective on approximate covariate balancing 2024 Yi­min Dai
Ying Yan
+ Generalized Full Matching 2020 Fredrik Sävje
Michael Higgins
Jasjeet S. Sekhon
+ PDF Chat Robust policy evaluation from large-scale observational studies 2019 Md Saiful Islam
Md Sarowar Morshed
Gary J. Young
Md. Noor‐E‐Alam

Citing (43)

Action Title Year Authors
+ The Impact of Measurement Error on Evaluation Methods Based on Strong Ignorability 2004 Andrew Chesher
Erich Battistin
+ Controlling Bias in Observational Studies: A Review 2006 William G. Cochran
+ Counterfactuals and Causal Inference: Methods and Principles for Social Research 2007 Stephen L. Morgan
Christopher Winship
+ Invariant and Metric Free Proximities for Data Matching: An<i>R</i>Package 2008 Stefano M. Iacus
Giuseppe Porro
+ Sensitivity to Exogeneity Assumptions in Program Evaluation 2003 Guido W. Imbens
+ PDF Chat Matching With Doses in an Observational Study of a Media Campaign Against Drug Abuse 2001 Bo Lü
Elaine Zanutto
Robert Hornik
Paul R. Rosenbaum
+ The prognostic analogue of the propensity score 2008 B. B. Hansen
+ PDF Chat Multivariate Matching Methods That Are Monotonic Imbalance Bounding 2011 Stefano M. Iacus
Gary King
Giuseppe Porro
+ PDF Chat Causal Inference without Balance Checking: Coarsened Exact Matching 2011 Stefano M. Iacus
Gary King
Giuseppe Porro
+ PDF Chat On the histogram as a density estimator:L 2 theory 1981 David A. Freedman
Persi Diaconis
+ Multivariate Density Estimation 1992 David W. Scott
+ PDF Chat Minimum Distance Matched Sampling With Fine Balance in an Observational Study of Treatment for Ovarian Cancer 2007 Paul R. Rosenbaum
Richard N. Ross
Jeffrey H. Silber
+ Missing data imputation, matching and other applications of random recursive partitioning 2006 Stefano M. Iacus
Giuseppe Porro
+ PDF Chat Random Recursive Partitioning: a matching method for the estimation of the average treatment effect 2008 Giuseppe Porro
Stefano M. Iacus
+ Bias-Corrected Matching Estimators for Average Treatment Effects 2010 Alberto Abadie
Guido W. Imbens
+ <b>cem</b>: Software for Coarsened Exact Matching 2009 Stefano M. Iacus
Gary King
Giuseppe Porro
+ Inference and missing data 1976 Donald B. Rubin
+ Bias Corrected Matching Estimators for Average Treatment Efiects 2007 Alberto Abadie
Guido W. Imbens
+ A comparison of propensity score methods: a case‐study estimating the effectiveness of post‐AMI statin use 2005 Peter C. Austin
Muhammad Mamdani
+ PDF Chat Identification and Estimation of Local Average Treatment Effects 1994 Guido W. Imbens
Joshua D. Angrist
+ Causal Inference With General Treatment Regimes 2004 Kosuke Imai
David A. van Dyk
+ PDF Chat Dealing with limited overlap in estimation of average treatment effects 2009 Richard K. Crump
V. Joseph Hotz
Guido W. Imbens
Oscar A. Mitnik
+ Multiple Imputation for Nonresponse in Surveys 1987 Donald B. Rubin
+ PDF Chat The Dangers of Extreme Counterfactuals 2005 Gary King
Langche Zeng
+ Matching as Nonparametric Preprocessing for Reducing Model Dependence in Parametric Causal Inference 2007 Daniel E. Ho
Kosuke Imai
Gary King
Elizabeth A. Stuart
+ PDF Chat Bandwidth Selection and the Estimation of Treatment Effects with Unbalanced Data 2007 José Galdo
Jeffrey A. Smith
Dan A. Black
+ PDF Chat Misunderstandings Between Experimentalists and Observationalists about Causal Inference 2008 Kosuke Imai
Gary King
Elizabeth A. Stuart
+ PDF Chat The Essential Role of Pair Matching in Cluster-Randomized Experiments, with Application to the Mexican Universal Health Insurance Evaluation 2009 Kosuke Imai
Gary King
Clayton Nall
+ Analyzing Incomplete Political Science Data: An Alternative Algorithm for Multiple Imputation 2008 Gary King
James Honaker
Anne Joseph O’Connell
Kenneth F. Scheve
+ Comparative Effectiveness of Matching Methods for Causal Inference 2011 Gary King
Richard A. Nielsen
Carter Coberley
James E. Pope
Aaron Wells
+ None 2001 Donald B. Rubin
+ Analyzing Incomplete Political Science Data: An Alternative Algorithm for Multiple Imputation 2001 Gary King
James Honaker
Anne M. Joseph
Kenneth F. Scheve
+ Identification and Estimation of Local Average Treatment Effects 1995 Joshua D. Angrist
Guido W. Imbens
+ PDF Chat Causal Effects in Nonexperimental Studies: Reevaluating the Evaluation of Training Programs 1999 Rajeev Dehejia
Sadek Wahba
+ PDF Chat The role of the propensity score in estimating dose-response functions 2000 Guido W. Imbens
+ PDF Chat Propensity Score-Matching Methods for Nonexperimental Causal Studies 2002 Rajeev Dehejia
Sadek Wahba
+ PDF Chat Does matching overcome LaLonde's critique of nonexperimental estimators? 2004 Jeffrey A. Smith
Petra Todd
+ PDF Chat Nonparametric Estimation of Average Treatment Effects Under Exogeneity: A Review 2004 Guido W. Imbens
+ PDF Chat Bandwidth Selection and the Estimation of Treatment Effects with Unbalanced Data 2008 José Galdo
Smith
BLACK
+ Permutation Methods 2007 Paul W. Mielke
Kenneth J. Berry