The determinant of the Eisenstein matrix and Hilbert class fields

Type: Article

Publication Date: 1985-01-01

Citations: 24

DOI: https://doi.org/10.1090/s0002-9947-1985-0792829-1

Abstract

We compute the determinant of the Eisenstein matrix associated to the Hilbert-Blumenthal modular group <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="PSL Subscript 2 Baseline left-parenthesis script upper O Subscript k Baseline right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mtext>PSL</mml:mtext> <mml:mn>2</mml:mn> </mml:msub> </mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi class="MJX-tex-caligraphic" mathvariant="script">O</mml:mi> </mml:mrow> <mml:mi>k</mml:mi> </mml:msub> </mml:mrow> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">{\text {PSL}_2}({\mathcal {O}_k})</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, and express it in terms of the zeta function of the Hilbert class field of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper K"> <mml:semantics> <mml:mi>K</mml:mi> <mml:annotation encoding="application/x-tex">K</mml:annotation> </mml:semantics> </mml:math> </inline-formula>.

Locations

  • Transactions of the American Mathematical Society - View - PDF
  • Transactions of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ PDF The Determinant of the Eisenstein Matrix and Hilbert Class Fields 1985 I. Efrat
P. Sarnak
+ PDF Determinant expression of Selberg zeta functions. II 1992 Shin-ya Koyama
+ On 𝑝-adic Hermitian Eisenstein series 2006 Shōyū Nagaoka
+ PDF The scattering matrix for the Hilbert modular group 2009 Riad Masri
+ PDF Petersson's trace formula and the Hecke eigenvalues of Hilbert modular forms 2008 Andrew Knightly
Charles Li
+ Vector-valued Modular Forms, Computational Considerations 2020 Tobias Magnusson
+ PDF Determinant expression of Selberg zeta functions. III 1991 Shin-ya Koyama
+ Eisenstein’s Program and Modular Forms 2020 A. L. Smirnov
+ Codes over rings of size four, Hermitian lattices, and corresponding theta functions 2007 Tony Shaska
G. S. Wijesiri
+ PDF An explicit modular equation in two variables for 𝑄(√3) 1988 Harvey Cohn
Jesse Ira Deutsch
+ PDF Computing isogeny covariant differential modular forms 2004 Chris Hurlburt
+ PDF Fourier expansion of Eisenstein series on the Hilbert modular group and Hilbert class fields 2002 Claus Sorensen
+ PDF The Dedekind-Mertens formula and determinantal rings 1999 Winfried Bruns
Anna Guerrieri
+ Eisenstein series and elliptic functions on <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msub><mml:mi>Γ</mml:mi><mml:mn>0</mml:mn></mml:msub><mml:mo stretchy="false">(</mml:mo><mml:mn>10</mml:mn><mml:mo stretchy="false">)</mml:mo></mml:math> 2010 S. Barry Cooper
Heung Yeung Lam
+ Modularity of residual Galois extensions and the Eisenstein ideal 2019 Tobias Berger
Krzysztof Klosin
+ Hilbert modular forms and Galois representations 2024 Ajith Nair
Ajmain Yamin
+ PDF An explicit modular equation in two variables and Hilbert’s twelfth problem 1982 Harvey Cohn
+ PDF Chat Eisenstein series of even weight 𝑘≥2 and integral binary quadratic forms 2021 Andreas Mono
+ PDF Exponential sums of Lerch’s zeta functions 1985 Kai Wang
+ The Chowla-Selberg formula for quartic Abelian CM fields 2015 Robert Cass