Detecting chameleons through Casimir force measurements

Type: Article

Publication Date: 2007-12-27

Citations: 133

DOI: https://doi.org/10.1103/physrevd.76.124034

Abstract

The best laboratory constraints on strongly coupled chameleon fields come not from tests of gravity per se but from precision measurements of the Casimir force. The chameleonic force between two nearby bodies is more akin to a Casimir-like force than a gravitational one: The chameleon force behaves as an inverse power of the distance of separation between the surfaces of two bodies, just as the Casimir force does. Additionally, experimental tests of gravity often employ a thin metallic sheet to shield electrostatic forces; however, this sheet masks any detectable signal due to the presence of a strongly coupled chameleon field. As a result of this shielding, experiments that are designed to specifically test the behavior of gravity are often unable to place any constraint on chameleon fields with a strong coupling to matter. Casimir force measurements do not employ a physical electrostatic shield and as such are able to put tighter constraints on the properties of chameleons fields with a strong matter coupling than tests of gravity. Motivated by this, we perform a full investigation on the possibility of testing chameleon models with both present and future Casimir experiments. We find that present-day measurements are not able to detect the chameleon. However, future experiments have a strong possibility of detecting or rule out a whole class of chameleon models.

Locations

  • Physical review. D. Particles, fields, gravitation, and cosmology/Physical review. D, Particles, fields, gravitation, and cosmology - View
  • arXiv (Cornell University) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ PDF Chat Force sensor for chameleon and Casimir force experiments with parallel-plate configuration 2015 Attaallah Almasi
Philippe Brax
Davide Iannuzzi
René I. P. Sedmik
+ PDF Chat The Classical Symmetron Force in Casimir Experiments 2019 Benjamin Elder
Valeri Vardanyan
Y. Akrami
Philippe Brax
Anne-Christine Davis
R. S. Decca
+ PDF Chat Classical symmetron force in Casimir experiments 2020 Benjamin Elder
Valeri Vardanyan
Y. Akrami
Philippe Brax
Anne-Christine Davis
R. S. Decca
+ PDF Chat Casimir forces and non-Newtonian gravitation 2006 Roberto Onofrio
+ PDF Chat Tuning the Mass of Chameleon Fields in Casimir Force Experiments 2010 Ph. Brax
Carsten van de Bruck
Anne-Christine Davis
Douglas J. Shaw
Davide Iannuzzi
+ PDF Chat Chameleon vector bosons 2008 Ann E. Nelson
Jonathan R. Walsh
+ Laboratory Tests of Chameleon Models 2009 Philippe Brax
Carsten van de Bruck
Anne-Christine Davis
Douglas J. Shaw
+ PDF Chat Casimir tests of scalar-tensor theories 2023 Philippe Brax
Anne-Christine Davis
Benjamin Elder
+ Casimir Tests of Scalar-Tensor Theories 2022 Philippe Brax
Anne-Christine Davis
Benjamin D. Elder
+ A Chameleon Primer 2007 Ph. Brax
C. Vandebruck
Anne-Christine Davis
+ A Chameleon Primer 2007 Ph. Brax
Carsten van de Bruck
A.C. Davis
+ PDF Chat Challenging theories of dark energy with levitated force sensor 2023 Peiran Yin
+ PDF Chat Next Generation Design and Prospects for Cannex 2021 René I. P. Sedmik
Mario Pitschmann
+ An Introduction to Chameleon Gravity 2006 T. P. Waterhouse
+ Chameleon Fields: Awaiting Surprises for Tests of Gravity in Space 2004 Justin Khoury
Amanda Weltman
+ Testing Gravity and Predictions Beyond the Standard Model at Short Distances: The Casimir Effect 2023 G. L. Klimchitskaya
V. M. Mostepanenko
+ PDF Chat Chameleon field theories 2013 Justin Khoury
+ Constraints on Non-Newtonian Gravity from Recent Casimir Force Measurements 2004 V. M. Mostepanenko
+ PDF Chat Searching for Chameleon Dark Energy with Mechanical Systems 2022 J. Betz
Jack Manley
E. M. Wright
Daniel Grin
Sukhdeep Singh
+ PDF Chat Tests of chameleon gravity 2018 Clare Burrage
Jeremy Sakstein

Works Cited by This (36)

Action Title Year Authors
+ PDF Chat Thermal noise limitations to force measurements with torsion pendulums: Applications to the measurement of the Casimir force and its thermal correction 2005 S. K. Lamoreaux
W. T. Buttler
+ PDF Chat Measurement of the Casimir Force between Parallel Metallic Surfaces 2002 G. Bressi
G. Carugno
Roberto Onofrio
G. Ruoso
+ PDF Chat Measurement of quantum states of neutrons in the Earth’s gravitational field 2003 V. V. Nesvizhevsky
Hans G. Börner
A. M. Gagarski
A. Petoukhov
G. A. Petrov
H. Abele
S. Baeßler
G. Divkovic
F. J. Rueß
Thilo Stöferle
+ PDF Chat Casimir Force at Both Nonzero Temperature and Finite Conductivity 2000 M. Bordag
B. Geyer
G. L. Klimchitskaya
V. M. Mostepanenko
+ PDF Chat Precision Measurement of the Casimir Force from 0.1 to<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mn>0.9</mml:mn><mml:mi /><mml:mi mathvariant="italic">μ</mml:mi><mml:mi>m</mml:mi></mml:math> 1998 U. Mohideen
Anushree Roy
+ PDF Chat Compatibility of the Chameleon-Field Model with Fifth-Force Experiments, Cosmology, and PVLAS and CAST Results 2007 Philippe Brax
Carsten van de Bruck
Anne-Christine Davis
+ PDF Chat Evading equivalence principle violations, cosmological, and other experimental constraints in scalar field theories with a strong coupling to matter 2007 David F. Mota
Douglas J. Shaw
+ PDF Chat Temperature dependence of the Casimir effect 2005 Iver Brevik
J. B. Aarseth
Johan S. Høye
Kimball A. Milton
+ PDF Chat Strongly Coupled Chameleon Fields: New Horizons in Scalar Field Theory 2006 David F. Mota
Douglas J. Shaw
+ PDF Chat Tests of new physics from precise measurements of the Casimir pressure between two gold-coated plates 2007 R. S. Decca
Daniel López
Ephraim Fischbach
G. L. Klimchitskaya
D. E. Krause
V. M. Mostepanenko