<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>q</mml:mi></mml:math>-exponential distribution in urban agglomeration

Type: Article

Publication Date: 2001-12-21

Citations: 74

DOI: https://doi.org/10.1103/physreve.65.017106

Abstract

Usually, the studies of distributions of city populations have been reduced to power laws. In such analyses, a common practice is to consider cities with more than one hundred thousand inhabitants. Here, we argue that the distribution of cities for all ranges of populations can be well described by using a q-exponential distribution. This function, which reproduces the Zipf-Mandelbrot law, is related to the generalized nonextensive statistical mechanics and satisfies an anomalous decay equation.

Locations

  • Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics - View
  • arXiv (Cornell University) - View - PDF
  • PubMed - View
  • DataCite API - View

Similar Works

Action Title Year Authors
+ PDF Chat Truncated lognormal distributions and scaling in the size of naturally defined population clusters 2020 Álvaro Corral
Frederic Udina
Elsa Arcaute
+ PDF Chat A THEORETICAL APPROACH FOR PARETO–ZIPF LAW 2008 Çağlar Tunçay
+ A theoretical approach for Pareto-Zipf law 2008 Çağlar Tunçay
+ ZIPF'S LAW AND CITY SIZES: A SHORT TUTORIAL REVIEW ON MULTIPLICATIVE PROCESSES IN URBAN GROWTH 2008 H. Zanette
Consejo Nacional de Investigaciones
+ PDF Chat Fractal-based exponential distribution of urban density and self-affine fractal forms of cities 2012 Yanguang Chen
Jian Feng
+ Zipf's law and city sizes: A short tutorial review on multiplicative processes in urban growth 2007 Damián H. Zanette
+ Wandering in cities: a statistical physics approach to urban theory 2015 Rémi Louf
+ Wandering in cities: a statistical physics approach to urban theory 2015 Rémi Louf
+ PDF Chat Size distribution of cities: A kinetic explanation 2019 Stefano Gualandi
Giuseppe Toscani
+ PDF Chat q-distributions in complex systems: a brief review 2009 S. Picoli
R. S. Mendes
L. C. Malacarne
Ricardo Paupitz
+ The Area and Population of Cities: New Insights from a Different Perspective on Cities 2010 Hernán D. Rozenfeld
Diego Rybski
Xavier Gabaix
Hernán A. Makse
+ The <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e310" altimg="si6.svg"><mml:mi>q</mml:mi></mml:math>-exponentials do not maximize the Rényi entropy 2021 Thomas Oikonomou
Konstantinos Kaloudis
G. Baris Bagci
+ The Area and Population of Cities: New Insights from a Different Perspective on Cities 2010 Hernán D. Rozenfeld
Diego Rybski
Xavier Gabaix
Hernán A. Makse
+ Size and resources driven migration resulting in a power-law distribution of cities 2005 Ferdinando Semboloni
F. Leyvraz
+ PDF Chat Zipf′s Law, Hierarchical Structure, and Cards‐Shuffling Model for Urban Development 2012 Yanguang Chen
+ PDF Chat The Size Distribution, Scaling Properties and Spatial Organization of Urban Clusters: A Global and Regional Percolation Perspective 2016 Till Fluschnik
Steffen Kriewald
Anselmo García Cantú Ros
Bin Zhou
Dominik E. Reusser
Jürgen P. Kropp
Diego Rybski
+ A classification of the natural and social distributions Part 2: the explanations 2016 L. Benguigui
Maria Marinov
+ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e208" altimg="si7.svg"><mml:mi>k</mml:mi></mml:math>th distance distributions for generalized Gauss-Poisson process in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e213" altimg="si8.svg"><mml:msup><mml:mrow><mml:mi mathvariant="double-struck">R</mml:mi></mml:mrow><mml:mrow><mml:mi>n</mml:mi></mml:mrow></mml:msup></mml:math> 2021 Kaushlendra Pandey
Abhishek Gupta
+ How the geometry of cities explains urban scaling laws and determines their exponents 2019 Carlos Molinero
Stefan Thurner
+ Probability Distributions in Complex Systems 2007 Didier Sornette