Pairs of real $2$-by-$2$ matrices that generate free products.

Type: Article

Publication Date: 1968-06-01

Citations: 33

DOI: https://doi.org/10.1307/mmj/1028999969

Locations

  • The Michigan Mathematical Journal - View - PDF

Similar Works

Action Title Year Authors
+ Pairs of matrices in $GL_2(\mathbf{R}_{\geq 0})$ that freely generate 2014 Melvyn B. Nathanson
+ PDF Chat Pairs of matrices generating discrete free groups and free products. 1968 Morris Newman
+ PDF Chat Pairs of Matrices in <em>GL</em><sub>2</sub>(R<sub>≥0</sub>) That Freely Generate 2015 Melvyn B. Nathanson
+ PDF Chat Products of unipotent matrices of index 2 1991 Jin-Hsien Wang
Pei Yuan Wu
+ A note on the variety of pairs of matrices whose product is symmetric 2011 Mahdi Majidi-Zolbanin
Bart Snapp
+ Two-generator discrete free products 1972 Norman Purzitsky
+ Triples of 2 Ă— 2 Matrices Which Generate Free Groups 1976 S. Bachmuth
H. Mochizuki
+ Products of Matrices 1991 Thomas J. Laffey
+ Matrices of order 2 2017 Vasile Pop
Ovidiu Furdui
+ On the varieties of pairs of matrices whose product is symmetric. 2007 Charles Christopher Mueller
+ Pairs of matrices with quadratic minimal polynomials 1983 F Gaines
+ PDF Chat On the size of the resonant set for the products of 2 Ă— 2 matrices 2011 J F J Allen
Benjamin Seeger
Deborah Unger
+ Pairs of commuting matrices over a finite field 1960 Walter Feit
N. J. Fine
+ 2 Ă— 2 minors of recursive matrices related to generalized Dyck paths 2024 Liming Zhang
Chenchen Zhu
Xiqiang Zhao
+ Products of zero-dimensional pairs 2015 Driss Karim
+ Factoring 2x2 Matrices with Determinant of ±1 and Integer Elements 2014 Ryan Altfillisch
+ 2 Ă— 2 Clifford matrices 1995 Ian R. Porteous
+ Construction of nonconvertible (0, 1) Matrices 2014 M. V. Budrevich
+ Strong 2-sum ${3\times 3}$ Matrices over Commutative Local Rings 2018 Gaohua Tang
Yansheng Wu
Huadong Su
+ Completely- matrices 1980 Richard W. Cottle

Works Cited by This (0)

Action Title Year Authors