Type: Article
Publication Date: 1994-01-01
Citations: 323
DOI: https://doi.org/10.1090/s0002-9939-1994-1191872-1
Given a self-similar set <italic>K</italic> in <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="double-struck upper R Superscript s"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="double-struck">R</mml:mi> </mml:mrow> <mml:mi>s</mml:mi> </mml:msup> </mml:mrow> <mml:annotation encoding="application/x-tex">{\mathbb {R}^s}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> we prove that the strong open set condition and the open set condition are both equivalent to <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper H Superscript alpha Baseline left-parenthesis upper K right-parenthesis greater-than 0"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mi>H</mml:mi> <mml:mi>α<!-- α --></mml:mi> </mml:msup> </mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mi>K</mml:mi> <mml:mo stretchy="false">)</mml:mo> <mml:mo>></mml:mo> <mml:mn>0</mml:mn> </mml:mrow> <mml:annotation encoding="application/x-tex">{H^\alpha }(K) > 0</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, where <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="alpha"> <mml:semantics> <mml:mi>α<!-- α --></mml:mi> <mml:annotation encoding="application/x-tex">\alpha</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is the similarity dimension of <italic>K</italic> and <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper H Superscript alpha"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mi>H</mml:mi> <mml:mi>α<!-- α --></mml:mi> </mml:msup> </mml:mrow> <mml:annotation encoding="application/x-tex">{H^\alpha }</mml:annotation> </mml:semantics> </mml:math> </inline-formula> denotes the Hausdorff measure of this dimension. As an application we show for the case <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="alpha equals s"> <mml:semantics> <mml:mrow> <mml:mi>α<!-- α --></mml:mi> <mml:mo>=</mml:mo> <mml:mi>s</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">\alpha = s</mml:annotation> </mml:semantics> </mml:math> </inline-formula> that <italic>K</italic> possesses inner points iff it is not a Lebesgue null set.