Separation properties for self-similar sets

Type: Article

Publication Date: 1994-01-01

Citations: 323

DOI: https://doi.org/10.1090/s0002-9939-1994-1191872-1

Abstract

Given a self-similar set <italic>K</italic> in <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="double-struck upper R Superscript s"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="double-struck">R</mml:mi> </mml:mrow> <mml:mi>s</mml:mi> </mml:msup> </mml:mrow> <mml:annotation encoding="application/x-tex">{\mathbb {R}^s}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> we prove that the strong open set condition and the open set condition are both equivalent to <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper H Superscript alpha Baseline left-parenthesis upper K right-parenthesis greater-than 0"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mi>H</mml:mi> <mml:mi>α<!-- α --></mml:mi> </mml:msup> </mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mi>K</mml:mi> <mml:mo stretchy="false">)</mml:mo> <mml:mo>&gt;</mml:mo> <mml:mn>0</mml:mn> </mml:mrow> <mml:annotation encoding="application/x-tex">{H^\alpha }(K) &gt; 0</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, where <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="alpha"> <mml:semantics> <mml:mi>α<!-- α --></mml:mi> <mml:annotation encoding="application/x-tex">\alpha</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is the similarity dimension of <italic>K</italic> and <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper H Superscript alpha"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mi>H</mml:mi> <mml:mi>α<!-- α --></mml:mi> </mml:msup> </mml:mrow> <mml:annotation encoding="application/x-tex">{H^\alpha }</mml:annotation> </mml:semantics> </mml:math> </inline-formula> denotes the Hausdorff measure of this dimension. As an application we show for the case <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="alpha equals s"> <mml:semantics> <mml:mrow> <mml:mi>α<!-- α --></mml:mi> <mml:mo>=</mml:mo> <mml:mi>s</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">\alpha = s</mml:annotation> </mml:semantics> </mml:math> </inline-formula> that <italic>K</italic> possesses inner points iff it is not a Lebesgue null set.

Locations

  • Proceedings of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat Weak separation properties for self-similar sets 1996 Martin Zerner
+ PDF Chat Sub-self-similar sets 1995 K. J. Falconer
+ Self-similar sets with an open set condition and great variety of overlaps 2008 Christoph Bandt
Nguyen Viet Hung
+ PDF Chat 𝑘-partitions and a characterization for compact unions of 𝑘 starshaped sets 1988 Marilyn Breen
+ PDF Chat On the structure of sets of uniqueness 1987 Russell Lyons
+ PDF Chat Equivalence of the defining sequences for ultradistributions 1993 Soon‐Yeong Chung
Dohan Kim
+ Strong compactness and a partition property 2005 Pierre Matet
+ PDF Chat Weak partition relations 1972 Andreas Blass
+ PDF Chat Characterization of Mergelyan sets 1974 Arne Stray
+ When the weak separation condition implies the generalized finite type condition 2020 Kathryn E. Hare
Kevin G. Hare
Alex Rutar
+ PDF Chat Rich sets 1980 C. T. Chong
+ PDF Chat Finite families with few symmetric differences 1999 Alberto Marcone
Franco Parlamento
Alberto Policriti
+ PDF Chat On products of Δ-sets 2024 Rodrigo Carvalho
Vinicius de Oliveira Rodrigues
+ Sets whose differences avoid squares modulo 𝑚 2021 Kevin Ford
Mikhail R. Gabdullin
+ On the Rajchman property for self-similar measures on <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg"><mml:msup><mml:mrow><mml:mi mathvariant="double-struck">R</mml:mi></mml:mrow><mml:mrow><mml:mi>d</mml:mi></mml:mrow></mml:msup></mml:math> 2022 Ariel Rapaport
+ A Π¹₁-uniformization principle for reals 2009 C.P. Chong
Liang Yu
+ 𝑝-Rider sets are 𝑞-Sidon sets 2002 Pascal Lefèvre
Luis Rodríguez–Piazza
+ PDF Chat Extending families of disjoint zero sets 1983 C. E. Aull
+ PDF Chat A separation theorem for Σ¹₁ sets 1980 Alain Louveau
+ PDF Chat The Π¹₂-singleton conjecture 1990 Sy D. Friedman