Maps in 𝑅ⁿ with finite-to-one extensions

Type: Article

Publication Date: 1986-01-01

Citations: 0

DOI: https://doi.org/10.1090/s0002-9939-1986-0854040-1

Abstract

Suppose <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="f colon upper X right-arrow bold upper R Superscript n"> <mml:semantics> <mml:mrow> <mml:mi>f</mml:mi> <mml:mo>:</mml:mo> <mml:mi>X</mml:mi> <mml:mo stretchy="false">β†’<!-- β†’ --></mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="bold">R</mml:mi> </mml:mrow> </mml:mrow> <mml:mi>n</mml:mi> </mml:msup> </mml:mrow> </mml:mrow> <mml:annotation encoding="application/x-tex">f:X \to {{\mathbf {R}}^n}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a continuous function from a closed subset <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper X"> <mml:semantics> <mml:mi>X</mml:mi> <mml:annotation encoding="application/x-tex">X</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="bold upper R Superscript n"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="bold">R</mml:mi> </mml:mrow> </mml:mrow> <mml:mi>n</mml:mi> </mml:msup> </mml:mrow> <mml:annotation encoding="application/x-tex">{{\mathbf {R}}^n}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> into <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="bold upper R Superscript n"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="bold">R</mml:mi> </mml:mrow> </mml:mrow> <mml:mi>n</mml:mi> </mml:msup> </mml:mrow> <mml:annotation encoding="application/x-tex">{{\mathbf {R}}^n}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. The Tietze Extension Theorem states that there is a continuous function <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper F colon bold upper R Superscript n Baseline right-arrow bold upper R Superscript n"> <mml:semantics> <mml:mrow> <mml:mi>F</mml:mi> <mml:mo>:</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="bold">R</mml:mi> </mml:mrow> </mml:mrow> <mml:mi>n</mml:mi> </mml:msup> </mml:mrow> <mml:mo stretchy="false">β†’<!-- β†’ --></mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="bold">R</mml:mi> </mml:mrow> </mml:mrow> <mml:mi>n</mml:mi> </mml:msup> </mml:mrow> </mml:mrow> <mml:annotation encoding="application/x-tex">F:{{\mathbf {R}}^n} \to {{\mathbf {R}}^n}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> that extends <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="f"> <mml:semantics> <mml:mi>f</mml:mi> <mml:annotation encoding="application/x-tex">f</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Here we consider the question of when the extension <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper F"> <mml:semantics> <mml:mi>F</mml:mi> <mml:annotation encoding="application/x-tex">F</mml:annotation> </mml:semantics> </mml:math> </inline-formula> can be chosen with <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper F vertical-bar bold upper R Superscript n Baseline minus upper X"> <mml:semantics> <mml:mrow> <mml:mi>F</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo stretchy="false">|</mml:mo> </mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="bold">R</mml:mi> </mml:mrow> </mml:mrow> <mml:mi>n</mml:mi> </mml:msup> </mml:mrow> <mml:mo>βˆ’<!-- βˆ’ --></mml:mo> <mml:mi>X</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">F|{{\mathbf {R}}^n} - X</mml:annotation> </mml:semantics> </mml:math> </inline-formula> being finite-to-one. Not every map <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="f"> <mml:semantics> <mml:mi>f</mml:mi> <mml:annotation encoding="application/x-tex">f</mml:annotation> </mml:semantics> </mml:math> </inline-formula> has such an extension. If <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="f left-parenthesis upper X right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mi>f</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>X</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">f(X)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is sufficiently nice, then there is such a finite-to-one extension. For example, it is shown that if <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="f colon upper X right-arrow bold upper R Superscript n"> <mml:semantics> <mml:mrow> <mml:mi>f</mml:mi> <mml:mo>:</mml:mo> <mml:mi>X</mml:mi> <mml:mo stretchy="false">β†’<!-- β†’ --></mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="bold">R</mml:mi> </mml:mrow> </mml:mrow> <mml:mi>n</mml:mi> </mml:msup> </mml:mrow> </mml:mrow> <mml:annotation encoding="application/x-tex">f:X \to {{\mathbf {R}}^n}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a map and <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="f left-parenthesis upper X right-parenthesis subset-of bold upper R Superscript n minus 1 times StartSet 0 EndSet"> <mml:semantics> <mml:mrow> <mml:mi>f</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>X</mml:mi> <mml:mo stretchy="false">)</mml:mo> <mml:mo>βŠ‚<!-- βŠ‚ --></mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="bold">R</mml:mi> </mml:mrow> </mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi>n</mml:mi> <mml:mo>βˆ’<!-- βˆ’ --></mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msup> </mml:mrow> <mml:mo>Γ—<!-- Γ— --></mml:mo> <mml:mo fence="false" stretchy="false">{</mml:mo> <mml:mn>0</mml:mn> <mml:mo fence="false" stretchy="false">}</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">f(X) \subset {{\mathbf {R}}^{n - 1}} \times \{ 0\}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> then there is a continuous extension <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper F colon bold upper R Superscript n Baseline right-arrow bold upper R Superscript n"> <mml:semantics> <mml:mrow> <mml:mi>F</mml:mi> <mml:mo>:</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="bold">R</mml:mi> </mml:mrow> </mml:mrow> <mml:mi>n</mml:mi> </mml:msup> </mml:mrow> <mml:mo stretchy="false">β†’<!-- β†’ --></mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="bold">R</mml:mi> </mml:mrow> </mml:mrow> <mml:mi>n</mml:mi> </mml:msup> </mml:mrow> </mml:mrow> <mml:annotation encoding="application/x-tex">F:{{\mathbf {R}}^n} \to {{\mathbf {R}}^n}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> such that <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper F vertical-bar bold upper R Superscript n Baseline minus upper X"> <mml:semantics> <mml:mrow> <mml:mi>F</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo stretchy="false">|</mml:mo> </mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="bold">R</mml:mi> </mml:mrow> </mml:mrow> <mml:mi>n</mml:mi> </mml:msup> </mml:mrow> <mml:mo>βˆ’<!-- βˆ’ --></mml:mo> <mml:mi>X</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">F|{{\mathbf {R}}^n} - X</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is finite-to-one. On the other hand, if <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper X"> <mml:semantics> <mml:mi>X</mml:mi> <mml:annotation encoding="application/x-tex">X</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is nowhere dense and <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="f left-parenthesis upper X right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mi>f</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>X</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">f(X)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> contains an open set, then there definitely is not such a finite-to-one extension. Other examples and theorems show that the finite-to-one extendability of a map <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="f colon upper X right-arrow bold upper R Superscript n"> <mml:semantics> <mml:mrow> <mml:mi>f</mml:mi> <mml:mo>:</mml:mo> <mml:mi>X</mml:mi> <mml:mo stretchy="false">β†’<!-- β†’ --></mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="bold">R</mml:mi> </mml:mrow> </mml:mrow> <mml:mi>n</mml:mi> </mml:msup> </mml:mrow> </mml:mrow> <mml:annotation encoding="application/x-tex">f:X \to {{\mathbf {R}}^n}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is not necessarily a function of the topology of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="f left-parenthesis upper X right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mi>f</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>X</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">f(X)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, but may depend on its embedding or on the map <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="f"> <mml:semantics> <mml:mi>f</mml:mi> <mml:annotation encoding="application/x-tex">f</mml:annotation> </mml:semantics> </mml:math> </inline-formula>.

Locations

  • Proceedings of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat Regular closed maps 1973 R. F. Dickman
+ PDF Chat 𝜎-locally finite maps 1977 E. Michael
+ PDF Chat Extensions of functions and spaces 1973 Giovanni Viglino
+ On almost one-to-one maps 2006 Alexander Blokh
Lex Oversteegen
E. D. Tymchatyn
+ PDF Chat Extensions of normal immersions of 𝑆¹ into 𝑅² 1974 Morris L. Marx
+ On the algebra of functions π’ž^{𝓀}-extendable for each 𝓀 finite 2004 WiesΕ‚aw PawΕ‚ucki
+ PDF Chat 𝐾ⁿ-positive maps in 𝐢*-algebras 1987 Takashi Itoh
+ PDF Chat Extensions relative to a 𝐼𝐼_{∞}-factor 1979 Sung Je Cho
+ PDF Chat Types of almost continuity 1983 B. Garrett
Kenneth R. Kellum
+ PDF Chat Absolutely closed maps 1975 Louis M. Friedler
+ PDF Chat A class of mappings containing all continuous and all semiconnected mappings 1978 J. K. Kohli
+ PDF Chat Extending continuous functions in zero-dimensional spaces 1975 Nancy M. Warren
+ PDF Chat Extensions of *-representations 1990 Andreas Kasparek
+ Post-critically finite maps on ℙⁿ for π•Ÿβ‰₯2 are sparse 2022 Patrick Ingram
Rohini Ramadas
Joseph H. Silverman
+ PDF Chat On purely inseparable extensions 𝐾[𝑋,π‘Œ]/𝐾[𝑋’,π‘Œβ€™] and their generators 1996 Daniel Daigle
+ β„•-compactness and weighted composition maps 2001 JesΓΊs Araujo
+ PDF Chat Concerning continuity apart from a meager set 1986 Janusz Kaniewski
Zbigniew Piotrowski
+ PDF Chat When π‘ˆ(πœ…) can be mapped onto π‘ˆ(πœ”) 1980 Jan van Mill
+ PDF Chat Universally catenarian domains of 𝐷+𝑀 type 1988 David F. Anderson
David E. Dobbs
S. Kabbaj
S. B. Mulay
+ PDF Chat Projections from 𝐿^{𝑝}(𝐺) onto central functions 1976 Benjamin B. Wells

Works That Cite This (0)

Action Title Year Authors

Works Cited by This (0)

Action Title Year Authors