Higher-order nonlinear dispersive equations

Type: Article

Publication Date: 1994-01-01

Citations: 105

DOI: https://doi.org/10.1090/s0002-9939-1994-1195480-8

Abstract

We study nonlinear dispersive equations of the form <disp-formula content-type="math/mathml"> \[ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="partial-differential Subscript t Baseline u plus partial-differential Subscript x Superscript 2 j plus 1 Baseline u plus upper P left-parenthesis u comma partial-differential Subscript x Baseline u comma ellipsis comma partial-differential Subscript x Superscript 2 j Baseline u right-parenthesis equals 0 comma x comma t element-of double-struck upper R comma j element-of double-struck upper Z Superscript plus Baseline comma"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi mathvariant="normal">∂<!-- ∂ --></mml:mi> <mml:mi>t</mml:mi> </mml:msub> </mml:mrow> <mml:mi>u</mml:mi> <mml:mo>+</mml:mo> <mml:msubsup> <mml:mi mathvariant="normal">∂<!-- ∂ --></mml:mi> <mml:mi>x</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mn>2</mml:mn> <mml:mi>j</mml:mi> <mml:mo>+</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msubsup> <mml:mi>u</mml:mi> <mml:mo>+</mml:mo> <mml:mi>P</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>u</mml:mi> <mml:mo>,</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi mathvariant="normal">∂<!-- ∂ --></mml:mi> <mml:mi>x</mml:mi> </mml:msub> </mml:mrow> <mml:mi>u</mml:mi> <mml:mo>,</mml:mo> <mml:mo>…<!-- … --></mml:mo> <mml:mo>,</mml:mo> <mml:msubsup> <mml:mi mathvariant="normal">∂<!-- ∂ --></mml:mi> <mml:mi>x</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mn>2</mml:mn> <mml:mi>j</mml:mi> </mml:mrow> </mml:msubsup> <mml:mi>u</mml:mi> <mml:mo stretchy="false">)</mml:mo> <mml:mo>=</mml:mo> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mspace width="2em" /> <mml:mi>x</mml:mi> <mml:mo>,</mml:mo> <mml:mi>t</mml:mi> <mml:mo>∈<!-- ∈ --></mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="double-struck">R</mml:mi> </mml:mrow> <mml:mo>,</mml:mo> <mml:mspace width="1em" /> <mml:mi>j</mml:mi> <mml:mo>∈<!-- ∈ --></mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="double-struck">Z</mml:mi> </mml:mrow> <mml:mo>+</mml:mo> </mml:msup> </mml:mrow> <mml:mo>,</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">{\partial _t}u + \partial _x^{2j + 1}u + P(u,{\partial _x}u, \ldots ,\partial _x^{2j}u) = 0,\qquad x,t \in \mathbb {R},\quad j \in {\mathbb {Z}^ + },</mml:annotation> </mml:semantics> </mml:math> \] </disp-formula> where <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper P left-parenthesis dot right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mi>P</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mo>⋅<!-- ⋅ --></mml:mo> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">P( \cdot )</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a polynomial having no constant or linear terms. It is shown that the associated initial value problem is locally well posed in weighted Sobolev spaces. The method of proof combines several sharp estimates for solutions of the associated linear problem and a change of dependent variable which allows us to consider data of arbitrary size.

Locations

  • Proceedings of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat Higher-Order Nonlinear Dispersive Equations 1994 Carlos E. Kenig
Gustavo Ponce
Luis Vega
+ PDF Chat Second-order solution of a nonlinear wave equation 1981 R. W. Lardner
+ On nonlinear wave equations with degenerate damping and source terms 2005 Viorel Barbu
Irena Lasiecka
Mohammad A. Rammaha
+ Linear dispersive equations 2016 M. Burak Erdoğan
Nikolaos Tzirakis
+ Nonlinear dispersive equations 2006 徹 小澤
誉志雄 堤
+ Nonlinear Dispersive Waves 1966 G. B. Whitham
+ Nonlinear Dispersive Equations 2006 Terence Tao
+ Second-order nonlinear effects 2014
+ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msup><mml:mi>H</mml:mi><mml:mi>p</mml:mi></mml:msup></mml:math>–<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si2.gif" overflow="scroll"><mml:msup><mml:mi>H</mml:mi><mml:mi>q</mml:mi></mml:msup></mml:math>estimates for dispersive equations and related applications 2009 Yong Ding
Xiaohua Yao
+ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msup><mml:mi>L</mml:mi><mml:mi>p</mml:mi></mml:msup></mml:math>–<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si2.gif" overflow="scroll"><mml:msup><mml:mi>L</mml:mi><mml:mi>q</mml:mi></mml:msup></mml:math>estimates for dispersive equations and related applications 2009 Yong Ding
Xiaohua Yao
+ Lectures on nonlinear dispersive equations 2006 徹 小澤
+ PDF Chat Higher-Order Stationary Dispersive Equations on Bounded Intervals 2018 Nikolai A. Larkin
Jackson Luchesi
+ Introduction to Nonlinear Dispersive Equations 2009 Felipe Linares
Gustavo Ponce
+ Numerical schemes for dispersive equations 2010 Liviu I. Ignat
+ PDF Chat Nonlinear oscillations of second order differential equations of Euler type 1996 Jitsuro Sugie
Tadayuki Hara
+ Other Nonlinear Dispersive Models 2009 Felipe Linares
Gustavo Ponce
+ PDF Chat Higher-order ordinary differential equations 2011 K. F. Riley
M. P. Hobson
+ Higher-order linear nonhomogeneous equations 2020 Barbara D. MacCluer
Paul Bourdon
Thomas Kriete
+ Nonoscillation theorems for second order nonlinear differential equations 1999 James S. W. Wong
+ PDF Chat The effect of retarded actions on nonlinear oscillations 1974 Y. G. Sficas
V. A. Staïkos