Zeros of 2-adic 𝐿-functions and congruences for class numbers and fundamental units

Type: Article

Publication Date: 1999-02-10

Citations: 5

DOI: https://doi.org/10.1090/s0025-5718-99-01046-7

Abstract

We study the imaginary quadratic fields such that the Iwasawa <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="lamda 2"> <mml:semantics> <mml:msub> <mml:mi>λ<!-- λ --></mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mn>2</mml:mn> </mml:mrow> </mml:msub> <mml:annotation encoding="application/x-tex">\lambda _{2}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-invariant equals 1, obtaining information on zeros of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="2"> <mml:semantics> <mml:mn>2</mml:mn> <mml:annotation encoding="application/x-tex">2</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-adic <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper L"> <mml:semantics> <mml:mi>L</mml:mi> <mml:annotation encoding="application/x-tex">L</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-functions and relating this to congruences for fundamental units and class numbers.

Locations

  • Mathematics of Computation - View
  • CiteSeer X (The Pennsylvania State University) - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat Class numbers and Iwasawa invariants of quadratic fields 1996 James S. Kraft
+ PDF Chat Tame and wild kernels of quadratic imaginary number fields 1999 Jerzy Browkin
Herbert Gangl
+ PDF Chat Small zeros of quadratic forms 1985 Wolfgang M. Schmidt
+ On the class number of certain imaginary quadratic fields 2001 J. D. Cohn
+ On the divisibility of the class number of imaginary quadratic number fields 2009 Stéphane Louboutin
+ PDF Chat Cyclotomic units and Greenberg’s conjecture for real quadratic fields 1996 Takashi Fukuda
+ PDF Chat Small zeros of quadratic forms over number fields. II 1989 Jeffrey D. Vaaler
+ PDF Chat 𝐿-functions and class numbers of imaginary quadratic fields and of quadratic extensions of an imaginary quadratic field 1992 Stéphane Louboutin
+ PDF Chat Zeros of 𝑝-adic 𝐿-functions 1975 Samuel S. Wagstaff
+ A generalization of a theorem of Rankin and Swinnerton-Dyer on zeros of modular forms 2004 Jayce R. Getz
+ PDF Chat On small Iwasawa invariants and imaginary quadratic fields 1991 Jonathan W. Sands
+ PDF Chat A capitulation problem and Greenberg’s conjecture on real quadratic fields 1996 Takashi Fukuda
K. Komatsu
+ Exponents of class groups of real quadratic function fields (II) 2005 Kalyan Chakraborty
Anirban Mukhopadhyay
+ PDF Chat Conjugacy problem in 𝐺𝐿₂(𝑍[√-1]) and units of quadratic extensions of 𝑄(√-1) 1986 Hironori Onishi
+ PDF Chat On the quadratic subfield of a 𝑍₂-extension of an imaginary quadratic number field 1987 Akira Endô
+ Exponents of class groups of real quadratic function fields 2004 Kalyan Chakraborty
Anirban Mukhopadhyay
+ PDF Chat On the Diophantine equations 𝑑₁𝑥²+2^{2𝑚}𝑑₂=𝑦ⁿ and 𝑑₁𝑥²+𝑑₂=4𝑦ⁿ 1993 LE Mao-hua
+ Computation of 𝑝-units in ray class fields of real quadratic number fields 2009 Hugo Chapdelaine
+ PDF Chat Quadratic fields with special class groups 1992 James J. Solderitsch
+ PDF Chat Quadratic geometry of numbers 1987 Hans Peter Schlickewei
Wolfgang M. Schmidt