Type: Article
Publication Date: 1999-02-10
Citations: 5
DOI: https://doi.org/10.1090/s0025-5718-99-01046-7
We study the imaginary quadratic fields such that the Iwasawa <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="lamda 2"> <mml:semantics> <mml:msub> <mml:mi>λ<!-- λ --></mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mn>2</mml:mn> </mml:mrow> </mml:msub> <mml:annotation encoding="application/x-tex">\lambda _{2}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-invariant equals 1, obtaining information on zeros of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="2"> <mml:semantics> <mml:mn>2</mml:mn> <mml:annotation encoding="application/x-tex">2</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-adic <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper L"> <mml:semantics> <mml:mi>L</mml:mi> <mml:annotation encoding="application/x-tex">L</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-functions and relating this to congruences for fundamental units and class numbers.