Computation of the 2-rank of pure cubic fields

Type: Article

Publication Date: 1978-01-01

Citations: 11

DOI: https://doi.org/10.1090/s0025-5718-1978-0480416-4

Abstract

For <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="k element-of bold upper Z minus StartSet 0 EndSet"> <mml:semantics> <mml:mrow> <mml:mi>k</mml:mi> <mml:mo>∈<!-- ∈ --></mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="bold">Z</mml:mi> </mml:mrow> </mml:mrow> <mml:mi class="MJX-variant" mathvariant="normal">∖<!-- ∖ --></mml:mi> <mml:mo fence="false" stretchy="false">{</mml:mo> <mml:mn>0</mml:mn> <mml:mo fence="false" stretchy="false">}</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">k \in {\mathbf {Z}}\backslash \{ 0\}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> there is a close connection between a certain subgroup of the Selmer group of the elliptic curve given by: <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="y squared equals x cubed plus k"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mi>y</mml:mi> <mml:mn>2</mml:mn> </mml:msup> </mml:mrow> <mml:mo>=</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mi>x</mml:mi> <mml:mn>3</mml:mn> </mml:msup> </mml:mrow> <mml:mo>+</mml:mo> <mml:mi>k</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">{y^2} = {x^3} + k</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, and the group of elements of order 2 of the class group <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="Cl left-parenthesis k right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mtext>Cl</mml:mtext> </mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mi>k</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">{\text {Cl}}(k)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="bold upper Q left-parenthesis RootIndex 3 StartRoot k EndRoot right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="bold">Q</mml:mi> </mml:mrow> </mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mroot> <mml:mi>k</mml:mi> <mml:mn>3</mml:mn> </mml:mroot> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">{\mathbf {Q}}(\sqrt [3]{k})</mml:annotation> </mml:semantics> </mml:math> </inline-formula> denoted by <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="Cl Subscript 2 Baseline left-parenthesis k right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mtext>Cl</mml:mtext> <mml:mn>2</mml:mn> </mml:msub> </mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mi>k</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">{\text {Cl}_2}(k)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> (cf. [4]). In the following paper we give some consequences of this fact, that make the computation of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="Cl Subscript 2 Baseline left-parenthesis k right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mtext>Cl</mml:mtext> <mml:mn>2</mml:mn> </mml:msub> </mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mi>k</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">{\text {Cl}_2}(k)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> considerably easier. For <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="k greater-than 10 000"> <mml:semantics> <mml:mrow> <mml:mi>k</mml:mi> <mml:mo>&gt;</mml:mo> <mml:mn>10</mml:mn> <mml:mspace width="thinmathspace" /> <mml:mn>000</mml:mn> </mml:mrow> <mml:annotation encoding="application/x-tex">k &gt; 10\,000</mml:annotation> </mml:semantics> </mml:math> </inline-formula> we compute <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="Cl Subscript 2 Baseline left-parenthesis k right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mtext>Cl</mml:mtext> <mml:mn>2</mml:mn> </mml:msub> </mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mi>k</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">{\text {Cl}_2}(k)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> by methods developed in [2], and by using [1] we get the structure of the 2-primary part of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="Cl left-parenthesis k right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mtext>Cl</mml:mtext> </mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mi>k</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">{\text {Cl}}(k)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> with the exception of 39 cases.

Locations

  • Mathematics of Computation - View - PDF

Similar Works

Action Title Year Authors
+ Computation of the 2-Rank of Pure Cubic Fields 1978 H. Eisenbeis
G. Frey
B. Ommerborn
+ The rank of elliptic curves with rational 2-torsion points over large fields 2005 Bo‐Hae Im
+ PDF Chat On the Rank of Elliptic Curves in Elementary Cubic Extensions 2015 Rintaro Kozuma
+ PDF Chat A rapid method of evaluating the regulator and class number of a pure cubic field 1983 Hywel C Williams
Gerhard W. Dueck
B. K. Schmid
+ Comparison of 4-class ranks of certain quadratic fields 2001 Frank Gerth
+ On quadratic fields with large 3-rank 2004 Karim Belabas
+ PDF Chat Class groups of complex quadratic fields 1983 René Schoof
+ 2-Selmer groups, 2-class groups and rational points on elliptic curves 2017 Chao Li
+ PDF Chat Certain pure cubic fields with class-number one 1977 Hywel C Williams
+ PDF Chat Rank growth of elliptic curves over 𝑁-th root extensions 2023 Ari Shnidman
Ariel Weiss
+ PDF Chat On a class of elliptic curves with rank at most two 1995 Harvey E. Rose
+ Complete determination of the 3-class rank in pure cubic fields 1977 Shinju Kobayashi
+ Computing the rank of elliptic curves over real quadratic number fields of class number 1 1999 J. E. Cremona
P. Serf
+ Bounds on 2-torsion in class groups of number fields and integral points on elliptic curves 2020 Manjul Bhargava
Arul Shankar
Takashi Taniguchi
Frank Thorne
Jacob Tsimerman
Zhao Yang
+ PDF Chat The linear and quadratic Schur subgroups over the 𝑆-integers of a number field 1989 Carl Riehm
+ PDF Chat Persistence of form and the value group of reducible cubics 1987 P. D. T. A. Elliott
+ PDF Chat On the 2-rank and 4-rank of the class group of some real pure quartic number fields 2021 Mbarek Haynou
Mohammed Taous
+ Elliptic curves with 2-torsion contained in the 3-torsion field 2015 Julio Brau
Nathan Jones
+ PDF Chat Prime torsion in the Brauer group of an elliptic curve 2023 Charlotte Ure
+ Characters of 𝑝’-degree with cyclotomic field of values 2006 Gabriel Navarro
Pham Huu Tiep