The hexagonal packing lemma and Rodin Sullivan conjecture

Type: Article

Publication Date: 1994-01-01

Citations: 8

DOI: https://doi.org/10.1090/s0002-9947-1994-1162100-2

Abstract

The Hexagonal Packing Lemma of Rodin and Sullivan [6] states that <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="s Subscript n Baseline right-arrow 0"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>s</mml:mi> <mml:mi>n</mml:mi> </mml:msub> </mml:mrow> <mml:mo stretchy="false">→<!-- → --></mml:mo> <mml:mn>0</mml:mn> </mml:mrow> <mml:annotation encoding="application/x-tex">{s_n} \to 0</mml:annotation> </mml:semantics> </mml:math> </inline-formula> as <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="n right-arrow normal infinity"> <mml:semantics> <mml:mrow> <mml:mi>n</mml:mi> <mml:mo stretchy="false">→<!-- → --></mml:mo> <mml:mi mathvariant="normal">∞<!-- ∞ --></mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">n \to \infty</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Rodin and Sullivan conjectured that <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="s Subscript n Baseline equals upper O left-parenthesis 1 slash n right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>s</mml:mi> <mml:mi>n</mml:mi> </mml:msub> </mml:mrow> <mml:mo>=</mml:mo> <mml:mi>O</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mn>1</mml:mn> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo>/</mml:mo> </mml:mrow> <mml:mi>n</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">{s_n} = O(1/n)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. This has been proved by Z-Xu He [2]. Earlier, the present author proved the conjecture under some additional restrictions [1]. In the following we are able to remove these restrictions, and thus give an alternative proof of the RS conjecture. The proof is based on our previous article [1]. It is completely different from the proof of He, and it is mainly based on discrete potential theory, as developed by Rodin for the hexagonal case [4].

Locations

  • Transactions of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat Keller’s cube-tiling conjecture is false in high dimensions 1992 Jeffrey C. Lagarias
Peter W. Shor
+ PDF Chat Proof of Scott’s conjecture 1983 Dragutin Svrtan
+ PDF Chat A counterexample to Borsuk’s conjecture 1993 Jeff Kahn
Gil Kalai
+ PDF Chat The Π¹₂-singleton conjecture 1990 Sy D. Friedman
+ On packing measures and a theorem of Besicovitch 2014 I. Garcı́a
Pablo Shmerkin
+ A proof of the Hoggatt-Bergum conjecture 1999 Andrej Dujella
+ PDF Chat On a conjecture of A. J. Hoffman 1971 Joseph Zaks
+ PDF Chat On the solid-packing constant for circles 1969 Z. A. Melzak
+ PDF Chat On a conjecture of Danzer and Grünbaum 1996 Meir Katchalski
David Nashtir
+ Resolution of a conjecture of Andrews and Lewis involving cranks of partitions 2004 D. Kane
+ Corrigendum to the paper “Ovoidal packings of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="mml1" display="inline" overflow="scroll" altimg="si1.gif"><mml:mi>P</mml:mi><mml:mi>G</mml:mi><mml:mrow><mml:mo>(</mml:mo><mml:mn>3</mml:mn><mml:mo>,</mml:mo><mml:mi>q</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:math> for even <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="mml2" display="inline" overflow="scroll" altimg="si2.gif"><mml:mi>q</mml:mi></mml:math>” 2017 Bhaskar Bagchi
N. S. Narasimha Sastry
+ PDF Chat On the sphere conjecture of Birkhoff 1988 Richard Jerrard
+ PDF Chat A note on Hall’s lemma 1973 Dieter Gaier
+ PDF Chat A note on the combinatorial principles ♢(𝐸) 1978 Keith Devlin
+ PDF Chat Forbidden intersections 1987 Péter Frankl
Vojtěch Rödl
+ PDF Chat Cube slicing in 𝑅ⁿ 1986 Keith Ball
+ A containment result in 𝑃ⁿ and the Chudnovsky Conjecture 2016 Marcin Dumnicki
Halszka Tutaj‐Gasińska
+ PDF Chat A remark on Dunford-Pettis property in 𝐿₁(𝜇,𝑋) 1994 Raffaella Cilia
+ PDF Chat Packing dimension and Cartesian products 1996 Christopher J. Bishop
Yuval Peres
+ A covering lemma for rectangles in ℝⁿ 2005 Robert Fefferman
Jill Pipher