Lebesgue points via the Poincaré inequality

Type: Article

Publication Date: 2015-03-20

Citations: 4

DOI: https://doi.org/10.1007/s11425-015-5001-9

Locations

  • Science China Mathematics - View
  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ Lebesgue points via the Poincar\'e inequality 2014 Nijjwal Karak
Pekka Koskela
+ Lebesgue points via the Poincaré inequality 2014 Nijjwal Karak
Pekka Koskela
+ PDF Chat Capacities and Hausdorff measures on metric spaces 2015 Nijjwal Karak
Pekka Koskela
+ Capacities and Hausdorff measures on metric spaces 2014 Nijjwal Karak
Pekka Koskela
+ Capacities and Hausdorff measures on metric spaces 2014 Nijjwal Karak
Pekka Koskela
+ PDF Chat The Poincaré inequality is an open ended condition 2008 Stephen Keith
Xiao Zhong
+ PDF Chat A Review on the Lebesgue Spaces 2021 Santosh Ghimire
Bimala Mishra
+ Metric currents and the Poincar\'e inequality 2018 Katrin Fässler
Tuomas Orponen
+ Geometric characterizations of p-Poincaré inequalities in the metric setting 2016 Estíbalitz Durand-Cartagena
Jesús Á. Jaramillo
Nageswari Shanmugalingam
+ Poincaré inequalities and A weights on bow-ties 2024 Anders Björn
Jana Björn
Andreas Christensen
+ Poincaré inequalities and $A_p$ weights on bow-ties 2022 Anders Björn
Jana Björn
Andreas Christensen
+ Generalized Lebesgue points for Sobolev functions 2015 Nijjwal Karak
+ Metric currents and the Poincaré inequality 2018 Katrin Fässler
Tuomas Orponen
+ PDF Chat Geometric characterizations of $p$-Poincaré inequalities in the metric setting 2015 Estíbalitz Durand-Cartagena
Jesús Á. Jaramillo
Nageswari Shanmugalingam
+ PDF Chat Metric currents and the Poincaré inequality 2019 Katrin Fässler
Tuomas Orponen
+ Large-scale behaviour of Sobolev functions in Ahlfors regular metric measure spaces 2023 Josh Kline
Pekka Koskela
Khanh Nguyen
+ $$\theta$$-Lebesgue spaces 2024 Shouvik Datta Choudhury
+ The Choquet and Kellogg properties for the fine topology when $p=1$ in metric spaces 2017 Panu Lahti
+ The Choquet and Kellogg properties for the fine topology when $p=1$ in metric spaces 2017 Panu Lahti
+ PDF Chat A note on global integrability of upper gradients of p-superharmonic functions 2009 Outi Elina Maasalo
Anna Zatorska‐Goldstein