The geodesic flow for discrete groups of infinite volume

Type: Article

Publication Date: 1986-01-01

Citations: 0

DOI: https://doi.org/10.1090/s0002-9939-1986-0818464-0

Abstract

Let <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="normal upper Gamma"> <mml:semantics> <mml:mi mathvariant="normal">Γ<!-- Γ --></mml:mi> <mml:annotation encoding="application/x-tex">\Gamma</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be a discrete group acting in the unit ball <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper B"> <mml:semantics> <mml:mi>B</mml:mi> <mml:annotation encoding="application/x-tex">B</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of euclidean <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="n"> <mml:semantics> <mml:mi>n</mml:mi> <mml:annotation encoding="application/x-tex">n</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-space and <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper T left-parenthesis upper B right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mi>T</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>B</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">T(B)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> the unit tangent space of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper B"> <mml:semantics> <mml:mi>B</mml:mi> <mml:annotation encoding="application/x-tex">B</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We define the geodesic flow <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="g Subscript t"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>g</mml:mi> <mml:mi>t</mml:mi> </mml:msub> </mml:mrow> <mml:annotation encoding="application/x-tex">{g_t}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> on the quotient space <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="normal upper Omega equals upper T left-parenthesis upper B right-parenthesis slash normal upper Gamma"> <mml:semantics> <mml:mrow> <mml:mi mathvariant="normal">Ω<!-- Ω --></mml:mi> <mml:mo>=</mml:mo> <mml:mi>T</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>B</mml:mi> <mml:mo stretchy="false">)</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo>/</mml:mo> </mml:mrow> <mml:mi mathvariant="normal">Γ<!-- Γ --></mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">\Omega = T(B)/\Gamma</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and show that for discrete groups of infinite volume the flow is of zero type—namely, for measurable subsets <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper A comma upper B"> <mml:semantics> <mml:mrow> <mml:mi>A</mml:mi> <mml:mo>,</mml:mo> <mml:mi>B</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">A,B</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="normal upper Omega"> <mml:semantics> <mml:mi mathvariant="normal">Ω<!-- Ω --></mml:mi> <mml:annotation encoding="application/x-tex">\Omega</mml:annotation> </mml:semantics> </mml:math> </inline-formula> which are of finite measure, <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="limit Underscript t right-arrow normal infinity Endscripts g Subscript t Baseline left-parenthesis upper A right-parenthesis intersection upper B equals 0"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:munder> <mml:mo movablelimits="true" form="prefix">lim</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi>t</mml:mi> <mml:mo stretchy="false">→<!-- → --></mml:mo> <mml:mi mathvariant="normal">∞<!-- ∞ --></mml:mi> </mml:mrow> </mml:munder> </mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>g</mml:mi> <mml:mi>t</mml:mi> </mml:msub> </mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mi>A</mml:mi> <mml:mo stretchy="false">)</mml:mo> <mml:mo>∩<!-- ∩ --></mml:mo> <mml:mi>B</mml:mi> <mml:mo>=</mml:mo> <mml:mn>0</mml:mn> </mml:mrow> <mml:annotation encoding="application/x-tex">{\lim _{t \to \infty }}{g_t}(A) \cap B = 0</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Using this result, we give a new and elementary proof of the fact that for a discrete group of infinite volume, <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper N left-parenthesis r right-parenthesis equals o left-parenthesis upper V left-brace x colon StartAbsoluteValue x EndAbsoluteValue greater-than r right-brace right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mi>N</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>r</mml:mi> <mml:mo stretchy="false">)</mml:mo> <mml:mo>=</mml:mo> <mml:mi>o</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>V</mml:mi> <mml:mo fence="false" stretchy="false">{</mml:mo> <mml:mi>x</mml:mi> <mml:mo>:</mml:mo> <mml:mrow> <mml:mo>|</mml:mo> <mml:mi>x</mml:mi> <mml:mo>|</mml:mo> </mml:mrow> <mml:mo>&gt;</mml:mo> <mml:mi>r</mml:mi> <mml:mo fence="false" stretchy="false">}</mml:mo> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">N(r) = o(V\{ x:\left | x \right | &gt; r\} )</mml:annotation> </mml:semantics> </mml:math> </inline-formula> as <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="r right-arrow 1"> <mml:semantics> <mml:mrow> <mml:mi>r</mml:mi> <mml:mo stretchy="false">→<!-- → --></mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:annotation encoding="application/x-tex">r \to 1</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, where <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper N left-parenthesis r right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mi>N</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>r</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">N(r)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is the orbital counting function and <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper V"> <mml:semantics> <mml:mi>V</mml:mi> <mml:annotation encoding="application/x-tex">V</mml:annotation> </mml:semantics> </mml:math> </inline-formula> denotes hyperbolic volume.

Locations

  • Proceedings of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat The Geodesic Flow for Discrete Groups of Infinite Volume 1986 P J Nicholls
+ Prime geodesic theorem in the 3-dimensional hyperbolic space 2018 Olga Balkanova
Dimitrios Chatzakos
Giacomo Cherubini
Dmitry Frolenkov
Niko Laaksonen
+ PDF Chat On the equidistribution of closed geodesics and geodesic nets 2023 Xinze Li
Bruno Staffa
+ PDF Chat Group actions and direct sum decompositions of 𝐿^{𝑝} spaces 1989 Rodney Nillsen
+ PDF Chat Actions of finitely generated groups on compact metric spaces 2024 Ursula Hamenstädt
+ PDF Chat Conical limit points and the Cannon-Thurston map 2016 Woojin Jeon
Ilya Kapovich
Christopher J. Leininger
Ken’ichi Ohshika
+ PDF Chat On a maximal function on compact Lie groups 1989 Michael Cowling
Christopher Meaney
+ PDF Chat Engulfing and finitely generated groups 1986 Richard Skora
+ PDF Chat Limit sets of discrete groups of isometries of exotic hyperbolic spaces 1999 Kevin Corlette
Alessandra Iozzi
+ PDF Chat The equivariant Hurewicz map 1992 L Lewis
+ Invariant random subgroups of groups acting on hyperbolic spaces 2016 D. Osin
+ Asymptotic cycles for actions of Lie groups 2012 Sol Schwartzman
+ PDF Chat Finite groups as isometry groups 1976 Daniel Asimov
+ Discrete groups actions and corresponding modules 2003 Evgenij Troitsky
+ Livsic theorems for connected Lie groups 2001 Mark Pollicott
C. Walkden
+ Isometrisable group actions 2016 Itaï Ben Yaacov
Julien Melleray
+ PDF Chat Spaces of geodesic triangulations of the sphere 1987 Marwan Awartani
David W. Henderson
+ Gromov hyperbolicity of the $\tilde {j}_G$ metric and boundary correspondence 2022 Qingshan Zhou
Saminathan Ponnusamy
Tiantian Guan
+ PDF Chat Invariant tori for the billiard ball map 1990 Valery Kovachev
Georgi Popov
+ Frames generated by compact group actions 2016 Joseph W. Iverson

Works That Cite This (0)

Action Title Year Authors