On the functions of Littlewood-Paley, Lusin, and Marcinkiewicz

Type: Article

Publication Date: 1958-01-01

Citations: 361

DOI: https://doi.org/10.1090/s0002-9947-1958-0112932-2

Abstract

In their work on Fourier series Littlewood and Paley [5], introduced the function g as follows:is the function which is analytic in |z| <1, and whose real part has boundary value f(B).One of their main results is('):(A) \\g(j)\\P ^ Av\\j\l, Kp<*>.Accompanying this, they also proved the following "converse" result:where it is assumed that f(0)dO = 0. o In an earlier study on boundary values of analytic functions, Lusin [6] introduced the function (1.2) 5(*)(fl) = (// |*'|2^ .Here, £1( 6) is a standard "triangular" domain inside the unit circle whose vertex is at the point 6; dw is the Euclidean element of area(2).Marcinkiewicz and Zygmund [9], proved that ||S($)||, =g AV\\<S>\\V, 0 </><<*>.From this it follows, by a well-known theorem of M. Riesz, that:(B) ||S(*)||, ^ 4JI/II,, 1<*<».

Locations

  • Transactions of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat On the Functions of Littlewood-Paley, Lusin, and Marcinkiewicz 1958 E. M. Stein
+ PDF Chat On Littlewood-Paley functions 2007 Leslie Cheng
+ PDF Chat A note on the Littlewood-Paley function $g^{\ast} (f)$ 1966 Satoru Igari
+ PDF Chat On the functions of Littlewood-Paley and Marcinkiewicz 1984 Gen-ichirô Sunouchi
+ PDF Chat On the Littlewood-Paley 𝑔-function and the Lusin 𝑠-function 1968 George Gasper
+ PDF Chat On the Littlewood-Paley theorem for arbitrary intervals 2006 S. V. Kislyakov
D. V. Parilov
+ Littlewood-Paley Characterizations of Fractional Sobolev Spaces via Averages on Balls 2015 Feng Dai
Jun Liu
Dachun Yang
Wen Yuan
+ Littlewood-Paley inequalities for fractional derivative on Bergman spaces 2021 José Ángel Peláez
Elena de la Rosa
+ PDF Chat Littlewood-Paley Characterizations of Hajłasz-Sobolev and Triebel-Lizorkin Spaces via Averages on Balls 2016 Der‐Chen Chang
Jun Liu
Dachun Yang
Wen Yuan
+ Littlewood–Paley functions and Sobolev spaces 2019 Jiecheng Chen
Dashan Fan
Fayou Zhao
+ PDF Chat Littlewood–Paley inequalities for fractional derivative on Bergman spaces 2022 José Ángel Peláez
Elena de la Rosa
+ Pointwise Domination and Weak $$L^1$$ Boundedness of Littlewood-Paley Operators via Sparse Operators 2024 Mahdi Hormozi
+ On the weak boundedness of multilinear Littlewood--Paley functions 2021 Mahdi Hormozi
Yoshihiro Sawano
Kôzô Yabuta
+ PDF Chat Littlewood-Paley Operators on BMO 1987 Douglas S. Kurtz
+ Littlewood–Paley Theory and the Multiplier Theorem 2013 Chang‐Feng Dai
Yuan Xu
+ Littlewood-Paley Characterizations of Hajłasz-Sobolev and Triebel-Lizorkin Spaces via Averages on Balls 2016 Der‐Chen Chang
Jun Liu
Dachun Yang
Wen Yuan
+ PDF Chat Littlewood–Paley characterizations of fractional Sobolev spaces via averages on balls 2018 Feng Dai
Jun Liu
Dachun Yang
Wen Yuan
+ The Littlewood-Paley inequalities for Hardy-Orlicz spaces of harmonic functions on domains in $\mathbb{R}^n$ 2019 M. Stoll
+ Estimates for Littlewood--Paley Operators on Special John--Nirenberg--Campanato Spaces via Congruent Cubes 2021 Hongchao Jia
Dachun Yang
Wen Yuan
Yangyang Zhang
+ PDF Chat On Functions Analytic in a Half-Plane 1956 Daniel Waterman