Borel Summability of the Ground-State Energy in Spatially Cutoff<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mo>(</mml:mo><mml:mrow><mml:msup><mml:mrow><mml:mi>ϕ</mml:mi></mml:mrow><mml:mrow><mml:mn>4</mml:mn></mml:mrow></mml:msup></mml:mrow><mml:mo>)</mml:mo></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math>

Type: Article

Publication Date: 1970-11-30

Citations: 29

DOI: https://doi.org/10.1103/physrevlett.25.1583

Abstract

We show that the ground-state energy for a Hamiltonian ${H}_{0}+\ensuremath{\int}g(x):{\ensuremath{\phi}}^{4}(x):dx$ ($g\ensuremath{\in}{L}^{1}\ensuremath{\cap}{L}^{2}$; $g>~0$; ${H}_{0}=\mathrm{free}$ Hamiltonian for Bose particle of mass $m$ in space-time of two dimensions) may be determined from the Feynman perturbation series by the method of Borel summability. This demonstrates that summability methods can be applicable to divergent series in systems with a continuous infinity of degrees of freedom.

Locations

  • Physical Review Letters - View
  • CaltechAUTHORS (California Institute of Technology) - View - PDF

Similar Works

Action Title Year Authors
+ Quantum Field Theory as a Problem of Resummation (Short guide to using summability methods) 1992 Alexander Moroz
+ Quantum Field Theory as a Problem of Resummation (Short guide to using summability methods) 1992 Alexander Moroz
+ PDF Chat Borel Summability: Application to the Anharmonic Oscillator 1990 S. GRAFFI
V. GRECCHI
B. SIMON
+ SUMMABILITY OF FOURIER SERIES 2003 Robert Fefferman
+ PDF Chat Borel summability: Application to the anharmonic oscillator 1970 S. Graffi
V. Grecchi
Barry Simon
+ Summability of eigenfunction expansions 1964 S. Minakshisundaram
+ Borel summability and the renormalization group 1977 N. N. Khuri
+ On the Zero Order Summability of Fourier Series 1931 L. S. Bosanquet
E. H. Linfoot
+ Borel summability of divergent Born series 1983 L. Lovitch
Marziano Marziani
+ Borel summation of Brydges-Federbush-Mayer expansions for multiparticle potentials 1991 A. L. Rebenko
P. V. Reznichenko
+ Summability Theory and Its Applications 2022 Feyzı Başar
+ On the Summability of Fourier Series 1930 L. S. Bosanquet
+ The classical field limit of non-relativistic bosons. I. Borel summability for bounded potentials 1980
+ PDF Chat Summability of Fourier series 1970 Masako Izumi
Shin‐Ichi Izumi
+ Summability of fourier series 2017 Nikunja Bihari Dhal
+ Asymptotic completeness for a particle-Fermi-gas system 1987 A. Sh. Domnenkov
+ Borel-Leroy summability of a nonpolynomial potential 2008 G. A. T. F. da Costa
M. Gomes
+ On summability theory and method of Fourier series 2001 Jiaxing He
+ PDF Chat Summability of the perturbative expansion for a zero-dimensional disordered spin model 2000 Gabriel Álvarez
V. Martı́n-Mayor
J. J. Ruiz-Lorenzo
+ PDF Chat Summability and Fourier analysis 1972 George Brauer