Type: Article
Publication Date: 1988-01-01
Citations: 2
DOI: https://doi.org/10.1090/s0002-9939-1988-0954977-0
Let <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper A"> <mml:semantics> <mml:mi>A</mml:mi> <mml:annotation encoding="application/x-tex">A</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be a regular local ring of dimension 3 and let <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="u"> <mml:semantics> <mml:mi>u</mml:mi> <mml:annotation encoding="application/x-tex">u</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be an element of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper A"> <mml:semantics> <mml:mi>A</mml:mi> <mml:annotation encoding="application/x-tex">A</mml:annotation> </mml:semantics> </mml:math> </inline-formula> not in the square of the maximal ideal. Gabber has shown that all projective modules over <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper A left-bracket u Superscript negative 1 Baseline right-bracket"> <mml:semantics> <mml:mrow> <mml:mi>A</mml:mi> <mml:mo stretchy="false">[</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mi>u</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo>−<!-- − --></mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msup> </mml:mrow> <mml:mo stretchy="false">]</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">A[{u^{ - 1}}]</mml:annotation> </mml:semantics> </mml:math> </inline-formula> are free. An elementary proof of this fact is given here.
Action | Title | Year | Authors |
---|---|---|---|
+ | References for Chapter VIII | 2006 |
Tsit Yuen Lam |
+ | Vector bundles on real affine varieties | 1996 |
F. Ischebeck Manuel Ojanguren |