A simple proof of Gabber’s theorem on projective modules over a localized local ring

Type: Article

Publication Date: 1988-01-01

Citations: 2

DOI: https://doi.org/10.1090/s0002-9939-1988-0954977-0

Abstract

Let <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper A"> <mml:semantics> <mml:mi>A</mml:mi> <mml:annotation encoding="application/x-tex">A</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be a regular local ring of dimension 3 and let <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="u"> <mml:semantics> <mml:mi>u</mml:mi> <mml:annotation encoding="application/x-tex">u</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be an element of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper A"> <mml:semantics> <mml:mi>A</mml:mi> <mml:annotation encoding="application/x-tex">A</mml:annotation> </mml:semantics> </mml:math> </inline-formula> not in the square of the maximal ideal. Gabber has shown that all projective modules over <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper A left-bracket u Superscript negative 1 Baseline right-bracket"> <mml:semantics> <mml:mrow> <mml:mi>A</mml:mi> <mml:mo stretchy="false">[</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mi>u</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo>−<!-- − --></mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msup> </mml:mrow> <mml:mo stretchy="false">]</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">A[{u^{ - 1}}]</mml:annotation> </mml:semantics> </mml:math> </inline-formula> are free. An elementary proof of this fact is given here.

Locations

  • Proceedings of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat Projective modules 1976 S. Jøndrup
+ PDF Chat A remark on Horrocks’ theorem about projective 𝐴[𝑇]-modules 1983 Budh Nashier
+ PDF Chat Projective modules over subrings of 𝑘[𝑋,𝑌] 1978 David F. Anderson
+ PDF Chat 𝐿-dimension for modules over a local ring 2021 Courtney R. Gibbons
David A. Jorgensen
Janet Striuli
+ PDF Chat On quotient rings of trivial extensions 1983 Yoshimi Kitamura
+ PDF Chat Projective modules with free multiples and powers 1986 Hyman Bass
Robert M. Guralnick
+ PDF Chat A note on D. Quillen’s paper: “Projective modules over polynomial rings” (Invent. Math. 36 (1976), 167–171) 1977 Moshe Roitman
+ A remark on the category of graded 𝐹-modules 2023 McKinley Gray
+ PDF Chat 𝐾₁ of projective 𝑟-spaces 1970 Leslie G. Roberts
+ PDF Chat A note on complete intersections 1982 S. M. Bhatwadekar
+ Products of flat modules and global dimension relative to ℱ-Mittag-Leffler modules 2015 Manuel Cortés-Izurdiaga
+ PDF Chat Rumely’s local global principle for algebraic 𝑃𝒮𝒞 fields over rings 1998 Moshe Jarden
Aharon Razon
+ Gorenstein injective modules and local cohomology 2004 Reza Sazeedeh
+ The Gabriel-Roiter submodules of simple homogeneous modules 2010 Bo Chen
+ PDF Chat On the surjectivity criterion for Buchsbaum modules 1990 Shirō Gotō
+ PDF Chat On rings for which homogeneous maps are linear 1991 Peter Fuchs
C. J. Maxson
Günter Pilz
+ PDF Chat Extendibility criterion for a projective module of rank one over 𝑅[𝑇] and 𝑅[𝑇,𝑇⁻¹] 1993 S. M. Bhatwadekar
P. L. N. Varma
+ PDF Chat A local characterization of Noetherian and Dedekind rings 1985 Yves Lequain
+ PDF Chat Symmetric powers of complete modules over a two-dimensional regular local ring 1997 Daniel L. Katz
Vijay Kodiyalam
+ PDF Chat On a question of Quillen 1983 S. M. Bhatwadekar
Ravi A. Rao