Type: Article
Publication Date: 1993-09-13
Citations: 3505
DOI: https://doi.org/10.1103/physrevlett.71.1661
We derive a new completely integrable dispersive shallow water equation that is bi-Hamiltonian and thus possesses an infinite number of conservation laws in involution. The equation is obtained by using an asymptotic expansion directly in the Hamiltonian for Euler's equations in the shallow water regime. The soliton solution for this equation has a limiting form that has a discontinuity in the first derivative at its peak.