Extremal problems of Chebyshev type

Type: Article

Publication Date: 2009-01-13

Citations: 2

DOI: https://doi.org/10.1090/s0002-9939-09-09771-8

Abstract

Let $a \in \mathbb {C} \setminus [-1,1]$ be given. We consider the problem of finding $\sup |p(a)|$ among all polynomials $p$ with complex coefficients of degree less than or equal to $n$ with $\max _{-1\leq x \leq 1}|p(x)| \leq 1$. We derive an asymptotic expression for the extremal polynomial and for the extremal value in terms of elementary functions. The solution is based on the description of Zolotarev polynomials with respect to square root polynomial weights.

Locations

  • Proceedings of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ Complex Zolotarev Polynomials on the Real Interval [−1, 1] 1993 C. Detaille
J.-P. Thiran
+ PDF Chat Extremal Polynomials Connected with Zolotarev Polynomials 2020 I. V. Agafonova
V. N. Malozemov
+ A complex extremal problem of chebyshev type 1999 Peter Yuditskii
+ PDF Chat On the distribution of extremal points of general Chebyshev polynomials 1992 András Kroó
Franz Peherstorfer
+ An extremal property of Chebyshev polynomials 2008 Н. Н. Осипов
N. S. Sazhin
+ PDF Chat Some extremal problems for trigonometrical and complex polynomials 1955 Carl Hyltén-Cavallius
+ Asymptotic behavior and zero distribution of polynomials orthogonal with respect to Bessel functions 2014 Alfredo Deaño
Arno B. J. Kuijlaars
Pablo Román
+ Asymptotic behavior and zero distribution of polynomials orthogonal with respect to Bessel functions 2014 Alfredo Deaño
Arno B. J. Kuijlaars
Pablo Román
+ Extremal properties of certain trigonometric functions and Chebyshev polynomials 2006 I. V. Belyakov
+ PDF Chat Asymptotic Behavior and Zero Distribution of Polynomials Orthogonal with Respect to Bessel Functions 2015 Alfredo Deaño
Arno B. J. Kuijlaars
Pablo Román
+ Extremal problems for sums of powers of complex numbers 1966 J. D. Buckholtz
+ Prelimit distribution functions and limit polynomials in a chebyshev extremal problem 1981 L. S. Stoikova
+ On an extremal problem for nonnegative trigonometric polynomials and the characterization of positive quadrature formulas with Chebyshev weight function 1982 Franz Peherstorfer
+ On the Distribution of Extremal Points of General Chebyshev Polynomials 1992 András Kroó
Franz Peherstorfer
+ Chebyshev’s Problem of the Moments of Nonnegative Polynomials 2021 В. И. Иванов
+ Gauss-Lobatto Formulae and Extremal Problems with Polynomials 2008 Acu AnaMaria
Acu Mugur
+ PDF Chat Siciak's extremal function in complex and real analysis 2003 W. Pleśniak
+ AN EXTREMAL PROBLEM FOR ALGEBRAIC POLYNOMIAL 1993 Igor Milovanović
Milan A. Kovačević
+ Roots of Chebyshev Polynomials: a purely algebraic approach 2020 Lionel Ponton
+ Roots of Chebyshev Polynomials: a purely algebraic approach 2020 Lionel Ponton