Spectral stiff problems in domains surrounded by thin stiff and heavy bands: Local effects for eigenfunctions

Type: Article

Publication Date: 2011-01-01

Citations: 11

DOI: https://doi.org/10.3934/nhm.2011.6.1

Abstract

We consider the Neumann spectral problem for a second order differential operator,with piecewise constants coefficients, in a domain$\Omega_\varepsilon$ of $R^2$. Here $\Omega_\varepsilon$ is$\Omega \cup \omega_\varepsilon \cup \Gamma$, where $\Omega$ isa fixed bounded domain with boundary $\Gamma$,$\omega_\varepsilon$ is a curvilinear band of variable width$O(\varepsilon)$, and $\Gamma=\overline{\Omega}\cap \overline{\omega_\varepsilon}$. The density and stiffnessconstants are of order $O(\varepsilon^{-m-1})$ and $O(\varepsilon^{-1})$respectively in this band, while they are of order $O(1)$ in$\Omega$; $m$ is a positive parameter and $\varepsilon \in(0,1)$, $\varepsilon\to 0$. Considering the range of the low, middleand high frequencies, we provide asymptotics for the eigenvaluesand the corresponding eigenfunctions. For $m>2$, we highlight the middlefrequencies for which the corresponding eigenfunctions may belocalized asymptotically in small neighborhoods of certain pointsof the boundary.

Locations

  • Networks and Heterogeneous Media - View - PDF

Similar Works

Action Title Year Authors
+ Localization effects for Dirichlet problems in domains surrounded by thin stiff and heavy bands 2020 D. Gómez
С. А. Назаров
M. E. Pérez
+ Spectral Stiff Problems in Domains with a Strongly Oscillating Boundary 2011 D. Gómez
С. А. Назаров
E. Pérez
+ Spectral stiff problems in domains surrounded by thin bands: Asymptotic and uniform estimates for eigenvalues 2005 D. Gómez
М. Лобо
С. А. Назаров
E. Pérez
+ The stiff Neumann problem: asymptotic specialty and "kissing" domains 2020 Valeria Chiadò Piat
Lorenza D’Elia
С. А. Назаров
+ Localization of eigenfunctions in a thin domain with locally periodic oscillating boundary 2020 Klas Pettersson
+ Spectral properties of elliptic operator with double-contrast coefficients near a hyperplane 2014 Andrii Khrabustovskyi
Michael Plum
+ Spectral properties of elliptic operator with double-contrast coefficients near a hyperplane 2014 Andrii Khrabustovskyi
Michael Plum
+ PDF Chat Asymptotics for Spectral Problems with Rapidly Alternating Boundary Conditions on a Strainer Winkler Foundation 2020 D. Gómez
С. А. Назаров
M. E. Pérez
+ PDF Chat Boundary Quasi-Orthogonality and Sharp Inclusion Bounds for Large Dirichlet Eigenvalues 2011 Alex H. Barnett
Andrew Hassell
+ High Frequency Vibrations in a Stiff Problem 1997 М. Лобо
E. Pérez
+ Boundary quasi-orthogonality and sharp inclusion bounds for large Dirichlet eigenvalues 2010 Alex H. Barnett
Andrew Hassell
+ A Dirichlet Spectral Problem in Domains Surrounded by Thin Stiff and Heavy Bands 2020 D. Gómez
С. А. Назаров
M. E. Pérez
+ Small-scale mass estimates for Neumann eigenfunctions: piecewise smooth planar domains 2023 Hans Christianson
John A. Toth
+ Spectral analysis and spectral symbol of matrices in isogeometric collocation methods 2015 Marco Donatelli
Carlo Garoni
Carla Manni
Stefano Serra‐Capizzano
Hendrik Speleers
+ PDF Chat On multi-scale asymptotic structure of eigenfunctions in a boundary value problem with concentrated masses near the boundary 2017 С. А. Назаров
M. E. Pérez
+ PDF Chat The stiff Neumann problem: Asymptotic specialty and “kissing” domains 2021 Valeria Chiadò Piat
Lorenza D’Elia
С. А. Назаров
+ PDF Chat Comparable upper and lower bounds for boundary values of Neumann eigenfunctions and tight inclusion of eigenvalues 2018 Alex H. Barnett
Andrew Hassell
Melissa Tacy
+ Fast computation of high frequency Dirichlet eigenmodes via the spectral flow of the interior Neumann-to-Dirichlet map 2011 Alex H. Barnett
Andrew Hassell
+ Fast computation of high frequency Dirichlet eigenmodes via the spectral flow of the interior Neumann-to-Dirichlet map 2011 Alex H. Barnett
Andrew Hassell
+ Estimates on Neumann eigenfunctions at the boundary, and the "Method of Particular Solutions" for computing them 2011 Andrew Hassell
Alexander H. Barnett