Type: Article
Publication Date: 2006-04-30
Citations: 15
DOI: https://doi.org/10.4171/rmi/449
We consider a periodic pseudo-differential operator on the real line, which is a lower-order perturbation of an elliptic operator with a homogeneous symbol and constant coefficients. It is proved that the density of states of such an operator admits a complete asymptotic expansion at large energies. A few first terms of this expansion are found in a closed form.