Existence and uniqueness of minimal blow-up solutions to an inhomogeneous mass critical NLS

Type: Article

Publication Date: 2010-12-29

Citations: 142

DOI: https://doi.org/10.1090/s0894-0347-2010-00688-1

Abstract

We consider the 2-dimensional focusing mass critical NLS with an inhomogeneous nonlinearity: $i\partial _tu+\Delta u+k(x)|u|^{2}u=0$. From a standard argument, there exists a threshold $M_k>0$ such that $H^1$ solutions with $\|u\|_{L^2}<M_k$ are global in time while a finite time blow-up singularity formation may occur for $\|u\|_{L^2}>M_k$. In this paper, we consider the dynamics at threshold $\|u_0\|_{L^2}=M_k$ and give a necessary and sufficient condition on $k$ to ensure the existence of critical mass finite time blow-up elements. Moreover, we give a complete classification in the energy class of the minimal finite time blow-up elements at a nondegenerate point, hence extending the pioneering work by Merle who treated the pseudoconformal invariant case $k\equiv 1$.

Locations

  • Journal of the American Mathematical Society - View - PDF
  • arXiv (Cornell University) - View - PDF
  • HAL (Le Centre pour la Communication Scientifique Directe) - View

Similar Works

Action Title Year Authors
+ Existence and uniqueness of minimal blow up solutions to an inhomogeneous mass critical NLS 2010 Pierre Raphaël
Jérémie Szeftel
+ Existence and uniqueness of minimal blow up solutions to an inhomogeneous mass critical NLS 2010 Pierre Raphaël
Jérémie Szeftel
+ PDF Chat Classification of minimal mass blow-up solutions for an $${L^{2}}$$ L 2 critical inhomogeneous NLS 2016 Vianney Combet
François Genoud
+ Classification of minimal mass blow-up solutions for an $L^2$ critical inhomogeneous NLS 2015 Vianney Combet
François Genoud
+ PDF Chat Minimal Blow-Up Solutions to the Mass-Critical Inhomogeneous NLS Equation 2010 Valeria Banica
Rémi Carles
Thomas Duyckaerts
+ PDF Chat Minimal-mass blow-up solutions for inhomogeneous nonlinear Schrödinger equations with growing potentials 2023 Naoki Matsui
+ Minimal-mass blow-up solutions for inhomogeneous nonlinear Schrödinger equations with growth potentials 2021 Naoki Matsui
+ PDF Chat Minimal mass blow-up solutions for the<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="mml1" display="inline" overflow="scroll" altimg="si1.gif"><mml:msup><mml:mrow><mml:mi>L</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msup></mml:math>critical NLS with inverse-square potential 2017 Elek Csobo
François Genoud
+ PDF Chat Minimal-mass blowup solutions of the mass-critical NLS 2008 Terence Tao
Monica Vişan
Xiaoyi Zhang
+ PDF Chat A note on minimal mass blow up for inhomogeneous NLS 2024 Chenjie Fan
Shumao Wang
+ Characterization of minimal-mass blowup solutions to the focusing mass-critical NLS 2008 Rowan Killip
Dong Li
Monica Vişan
Xiaoyi Zhang
+ PDF Chat Minimal mass blow-up solutions for a inhomogeneous NLS equation 2024 Mykael Cardoso
Luiz Gustavo Farah
+ PDF Chat Blow-up of non-radial solutions for the L <sup>2</sup> critical inhomogeneous NLS equation 2022 Mykael Cardoso
Luiz Gustavo Farah
+ Minimal mass blow up solutions for a double power nonlinear Schr\"odinger equation 2014 Stefan Le Coz
Yvan Martel
Pierre Raphaël
+ PDF Chat The blow-up dynamic and upper bound on the blow-up rate for critical nonlinear Schrödinger equation 2005 Frank Merle
Pierre Raphaël
+ Low regularity blowup solutions for the mass-critical NLS in higher dimensions 2019 Chenmin Sun
Jiqiang Zheng
+ PDF Chat On the Critical Norm Concentration for the Inhomogeneous Nonlinear Schrödinger Equation 2022 Luccas Campos
Mykael Cardoso
+ Blow-up solutions on a sphere for the 3d quintic NLS in the energy space 2010 Justin Holmer
Svetlana Roudenko
+ Minimal-mass blowup solutions of the mass-critical NLS 2006 Terence Tao
Monica Vişan
Xiaoyi Zhang
+ Minimal blow-up solutions of mass-critical inhomogeneous Hartree equation 2013 Daomin Cao
Yiming Su