Distribution of eigenvalues of a two-parameter system of differential equations

Type: Article

Publication Date: 1979-01-01

Citations: 14

DOI: https://doi.org/10.1090/s0002-9947-1979-0517686-7

Abstract

In this paper two simultaneous Sturm-Liouville systems are considered, the first defined for the interval <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="0 less-than-or-slanted-equals x 1 less-than-or-slanted-equals 1"> <mml:semantics> <mml:mrow> <mml:mn>0</mml:mn> <mml:mspace width="thinmathspace" /> <mml:mo>⩽<!-- ⩽ --></mml:mo> <mml:mspace width="thinmathspace" /> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>x</mml:mi> <mml:mn>1</mml:mn> </mml:msub> </mml:mrow> <mml:mspace width="thinmathspace" /> <mml:mo>⩽<!-- ⩽ --></mml:mo> <mml:mspace width="thinmathspace" /> <mml:mn>1</mml:mn> </mml:mrow> <mml:annotation encoding="application/x-tex">0\, \leqslant \,{x_1}\, \leqslant \,1</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, the second for the interval <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="0 less-than-or-slanted-equals x 2 less-than-or-slanted-equals 1"> <mml:semantics> <mml:mrow> <mml:mn>0</mml:mn> <mml:mspace width="thinmathspace" /> <mml:mo>⩽<!-- ⩽ --></mml:mo> <mml:mspace width="thinmathspace" /> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>x</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mn>2</mml:mn> <mml:mspace width="thinmathspace" /> </mml:mrow> </mml:msub> </mml:mrow> <mml:mspace width="thinmathspace" /> <mml:mo>⩽<!-- ⩽ --></mml:mo> <mml:mspace width="thinmathspace" /> <mml:mn>1</mml:mn> </mml:mrow> <mml:annotation encoding="application/x-tex">0\, \leqslant \,{x_{2\,}}\, \leqslant \,1</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, and each containing the parameters <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="lamda"> <mml:semantics> <mml:mi>λ<!-- λ --></mml:mi> <mml:annotation encoding="application/x-tex">\lambda</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="mu"> <mml:semantics> <mml:mi>μ<!-- μ --></mml:mi> <mml:annotation encoding="application/x-tex">\mu</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Denoting the eigenvalues and eigenfunctions of the simultaneous systems by <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="left-parenthesis lamda Subscript j comma k Baseline comma mu Subscript j comma k Baseline right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>λ<!-- λ --></mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi>j</mml:mi> <mml:mo>,</mml:mo> <mml:mi>k</mml:mi> </mml:mrow> </mml:msub> </mml:mrow> <mml:mo>,</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>μ<!-- μ --></mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi>j</mml:mi> <mml:mo>,</mml:mo> <mml:mi>k</mml:mi> </mml:mrow> </mml:msub> </mml:mrow> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">({\lambda _{j,k}},{\mu _{j,k}})</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="psi Subscript j comma k Baseline left-parenthesis x Subscript 1 comma Baseline x 2 right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>ψ<!-- ψ --></mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi>j</mml:mi> <mml:mo>,</mml:mo> <mml:mi>k</mml:mi> </mml:mrow> </mml:msub> </mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>x</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mn>1</mml:mn> <mml:mo>,</mml:mo> </mml:mrow> </mml:msub> </mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>x</mml:mi> <mml:mn>2</mml:mn> </mml:msub> </mml:mrow> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">{\psi _{j,k}}({x_{1,}}{x_2})</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, respectively, <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="j comma k equals 0 comma 1 comma ellipsis"> <mml:semantics> <mml:mrow> <mml:mi>j</mml:mi> <mml:mo>,</mml:mo> <mml:mspace width="thinmathspace" /> <mml:mi>k</mml:mi> <mml:mspace width="thinmathspace" /> <mml:mo>=</mml:mo> <mml:mspace width="thinmathspace" /> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mspace width="thinmathspace" /> <mml:mn>1</mml:mn> <mml:mo>,</mml:mo> <mml:mspace width="thinmathspace" /> <mml:mo>…<!-- … --></mml:mo> <mml:mspace width="thinmathspace" /> </mml:mrow> <mml:annotation encoding="application/x-tex">j,\,k\, = \,0,\,1,\, \ldots \,</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, asymptotic methods are employed to derive asymptotic formulae for these expressions, as <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="j plus k right-arrow normal infinity"> <mml:semantics> <mml:mrow> <mml:mi>j</mml:mi> <mml:mo>+</mml:mo> <mml:mi>k</mml:mi> <mml:mo stretchy="false">→<!-- → --></mml:mo> <mml:mi mathvariant="normal">∞<!-- ∞ --></mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">j + k \to \infty</mml:annotation> </mml:semantics> </mml:math> </inline-formula> when <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="left-parenthesis j comma k right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mi>j</mml:mi> <mml:mo>,</mml:mo> <mml:mspace width="thinmathspace" /> <mml:mi>k</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">(j,\,k)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is restricted to lie in a certain sector of the <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="left-parenthesis x comma y right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mi>x</mml:mi> <mml:mo>,</mml:mo> <mml:mspace width="thinmathspace" /> <mml:mi>y</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">(x,\,y)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> -plane. These results constitute a further stage in the development of the theory related to the behaviour of the eigenvalues and eigenfunctions of multiparameter Sturm-Liouville systems and answer an open question concerning the uniform boundedness of the <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="psi Subscript j comma k Baseline left-parenthesis x 1 comma x 2 right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>ψ<!-- ψ --></mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi>j</mml:mi> <mml:mo>,</mml:mo> <mml:mi>k</mml:mi> </mml:mrow> </mml:msub> </mml:mrow> <mml:mspace width="thinmathspace" /> <mml:mo stretchy="false">(</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>x</mml:mi> <mml:mn>1</mml:mn> </mml:msub> </mml:mrow> <mml:mo>,</mml:mo> <mml:mspace width="thinmathspace" /> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>x</mml:mi> <mml:mn>2</mml:mn> </mml:msub> </mml:mrow> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">{\psi _{j,k}}\,({x_1},\,{x_2})</mml:annotation> </mml:semantics> </mml:math> </inline-formula>.

Locations

  • Transactions of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat Eigenvalues of a Sturm-Liouville problem and inequalities of Lyapunov type 1998 Chung-Wei Ha
+ PDF Chat Asymptotic formulae for the eigenvalues of a two-parameter ordinary differential equation of the second order 1972 M. Faierman
+ On the Distribution of the Eigenvalues of a Two-Parameter System of Ordinary Differential Equations of the Second Order 1977 M. Faierman
+ PDF Chat Comparison of eigenvalues associated with linear differential equations of arbitrary order 1976 Rodney D. Gentry
Curtis C. Travis
+ On the multiplicity of eigenvalues of a vectorial Sturm-Liouville differential equation and some related spectral problems 1999 Chao-Liang Shen
Chung‐Tsun Shieh
+ PDF Chat Distribution of Eigenvalues of A Two-Parameter System of Differential Equations 1979 M. Faierman
+ PDF Chat On the existence of eigenvalues of differential operators dependent on a parameter 1980 Sh. Strelitz
Shoshana Abramovich
+ PDF Chat Comparison theorems for eigenvalue problems for 𝑛th order differential equations 1988 Darrel Hankerson
Allan Peterson
+ PDF Chat On the existence of nonsimple real eigenvalues for general Sturm-Liouville problems 1983 Angelo B. Mingarelli
+ PDF Chat Existence of the eigenvalues of one differential operator dependent on parameter 1971 J. Degutis
Š. Strelicas
+ PDF Chat CHARACTERIZATION OF THE SPECTRUM OF AN IRREGULAR BOUNDARY VALUE PROBLEM FOR THE STURM-LIOUVILLE OPERATOR 2010 A. S. Makin
+ Some eigenvalue problems for vectorial Sturm-Liouville equations with eigenparameter dependent boundary conditions 2011 Chi-Hua Chan
+ Convergence radii for eigenvalues of two-parameter Sturm-Liouville problems 2000 Hans Volkmer
+ PDF Chat Numerical approximation of Sturm-Liouville eigenvalues 1980 John Paine
+ Sturm Liouville eigenvalue theory 2014 Shair Ahmad
Antonio Ambrosetti
+ PDF Chat Eigenvalue and eigenfunction computations for Sturm-Liouville problems 1991 Paul B. Bailey
Anton Zettl
+ PDF Chat Spectral Singularities of Sturm-Liouville Problems with Eigenvalue-Dependent Boundary Conditions 2009 Elgiz Bairamov
Nihal Yokuş
+ PDF Chat On solvability of second-order Sturm-Liouville boundary value problems at resonance 1998 Yujun Dong
+ Numerical approximation of eigenvalues of Sturm-Liouville systems 1976 B. A. Hargrave
+ Positive eigenvalues of second order boundary value problems and a theorem of M. G. Krein 2002 Stephen Clark
Don Hinton