Residue classes containing an unexpected number of primes

Type: Article

Publication Date: 2012-11-29

Citations: 10

DOI: https://doi.org/10.1215/00127094-1902268

Abstract

We fix a non-zero integer $a$ and consider arithmetic progressions $a \bmod q$, with $q$ varying over a given range. We show that for certain specific values of $a$, the arithmetic progressions $a \bmod q$ contain, on average, significantly fewer primes than expected.

Locations

  • Duke Mathematical Journal - View
  • arXiv (Cornell University) - View - PDF
  • HAL (Le Centre pour la Communication Scientifique Directe) - View
  • DataCite API - View

Similar Works

Action Title Year Authors
+ PDF Chat Counting primes in residue classes 2004 Marc Deléglise
Pierre Dusart
Xavier-François Roblot
+ PDF Chat Counting Primes in Residue Classes 2004 Marc Deléglise
Pierre Dusart
Xavier-François Roblot
+ PDF Chat Counting primes in residue classes 2004 Marc Deléglise
Pierre Dusart
Xavier-François Roblot
+ PDF Chat Counting primes in residue classes 2004 Marc Deléglise
Pierre Dusart
Xavier-François Roblot
+ On the Value Set of n! Modulo a Prime 2005 William D. Banks
+ Primes in Arithmetic Progressions 2011 Ranjan Roy
+ Primes in Arithmetic Progressions 2008 Ranjan Roy
+ Product of three primes in large arithmetic progressions 2022 R. Balasubramanian
Olivier Ramaré
Priyamvad Srivastav
+ Arithmetic progressions of Carmichael numbers in a reduced residue class 2020 William D. Banks
+ Arithmetic progressions of Carmichael numbers in a reduced residue class 2020 William D. Banks
+ Prime numbers in arithmetic progressions 1972 Saburô Uchiyama
+ Prime Numbers in Arithmetic Progressions 1993 Anatolij A. Karatsuba
Melvyn B. Nathanson
+ Prime numbers in arithmetic progressions 1991 Helmut Koch
+ Infinitely many primes in arithmetic progressions: the cyclotomic polynomial method 2002 Shay Gueron
Ran J. Tessler
+ Counting Primes in Arithmetic Progressions 2015 John Friedlander
+ PDF Chat An infinity of primes 2014 Joel Spencer
+ Least primes in arithmetic progressions 1989 Andrew Granville
+ Primes in general arithmetical progressions 1993 T. W. Körner
+ On the existence of products of primes in arithmetic progressions 2022 Barnabás Szabó
+ On the sequence $n! \bmod p$ 2022 Alexandr Grebennikov
Арсений Сагдеев
Aliaksei Semchankau
Андрей Василевский