The converse to a theorem of Sharp on Gorenstein modules

Type: Article

Publication Date: 1972-04-01

Citations: 114

DOI: https://doi.org/10.1090/s0002-9939-1972-0296067-7

Abstract

Let <italic>A</italic> be a commutative local Noetherian ring with identity of Krull dimension <italic>n, m</italic> its maximal ideal. Sharp has proved that if <italic>A</italic> is Cohen-Macauley and a homomorphic image of a Gorenstein local ring, then <italic>A</italic> has a Gorenstein module <italic>M</italic> with <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="dimension Subscript upper A slash m Baseline upper E x t Superscript n Baseline left-parenthesis upper A slash m comma upper M right-parenthesis equals 1"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>dim</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi>A</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo>/</mml:mo> </mml:mrow> <mml:mi>m</mml:mi> </mml:mrow> </mml:msub> </mml:mrow> <mml:msup> <mml:mi>Ext</mml:mi> <mml:mi>n</mml:mi> </mml:msup> <mml:mo>⁡</mml:mo> <mml:mo stretchy="false">(</mml:mo> <mml:mi>A</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo>/</mml:mo> </mml:mrow> <mml:mi>m</mml:mi> <mml:mo>,</mml:mo> <mml:mi>M</mml:mi> <mml:mo stretchy="false">)</mml:mo> <mml:mo>=</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:annotation encoding="application/x-tex">{\dim _{A/m}}\operatorname {Ext}^n(A/m,M) = 1</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. The aim of this note is to prove the converse to this theorem.

Locations

  • Proceedings of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat The Converse to a Theorem of Sharp on Gorenstein Modules 1972 Idun Reiten
+ PDF Chat 𝑛-Gorenstein rings 1974 Hans Bjørn Foxby
+ Ideals defining Gorenstein rings are (almost) never products 2007 Craig Huneke
+ PDF Chat Auslander’s 𝛿-invariants of Gorenstein local rings 1994 Songqing Ding
+ The Auslander-Reiten conjecture for Gorenstein rings 2008 Tokuji Araya
+ The Frobenius functor and injective modules 2014 Thomas Marley
+ Gorenstein injective modules and local cohomology 2004 Reza Sazeedeh
+ PDF Chat On the higher delta invariants of a Gorenstein local ring 1996 Yuji Yoshino
+ PDF Chat The associated graded ring and the index of a Gorenstein local ring 1994 Songqing Ding
+ Gorenstein injectivity of the section functor 2010 Reza Sazeedeh
+ Gorenstein injectivity of the section functor 2010 Reza Sazeedeh
+ Gorenstein rings call the tune 2004 A. -M. Simon
J. R. Strooker
+ Gorenstein rings and irreducible parameter ideals 2007 Thomas Marley
Mark Rogers
Hideto Sakurai
+ Gorenstein injective dimension and a generalization of Ischebeck Formula 2011 Reza Sazeedeh
+ Gorenstein injective dimension and a generalization of Ischebeck Formula 2011 Reza Sazeedeh
+ PDF Chat A Characterization of Gorenstein Rings and Grothendieck's Conjecture 2009 Kazem Khashyarmanesh
+ PDF Chat The Gorenstein and complete intersection properties of associated graded rings 2005 William Heinzer
Mee-Kyoung Kim
Bernd Ulrich
+ PDF Chat On maximality of Gorenstein sequences 1976 Maria Grazia Marinari
+ The Gorenstein and complete intersection properties of associated graded rings 2004 William Heinzer
Mee-Kyoung Kim
Bernd Ulrich
+ PDF Chat A short survey on Gorenstein global dimension 2011 Driss Bennis