The cusp forms of weight 3 on Γ₂(2,4,8)

Type: Article

Publication Date: 1993-01-01

Citations: 10

DOI: https://doi.org/10.1090/s0025-5718-1993-1181333-5

Abstract

The congruence subgroup <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="normal upper Gamma 2 left-parenthesis 2 comma 4 comma 8 right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi mathvariant="normal">Γ<!-- Γ --></mml:mi> <mml:mn>2</mml:mn> </mml:msub> </mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mn>2</mml:mn> <mml:mo>,</mml:mo> <mml:mn>4</mml:mn> <mml:mo>,</mml:mo> <mml:mn>8</mml:mn> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">{\Gamma _2}(2,4,8)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of the group <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="normal upper Gamma 2"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi mathvariant="normal">Γ<!-- Γ --></mml:mi> <mml:mn>2</mml:mn> </mml:msub> </mml:mrow> <mml:annotation encoding="application/x-tex">{\Gamma _2}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="4 times 4"> <mml:semantics> <mml:mrow> <mml:mn>4</mml:mn> <mml:mo>×<!-- × --></mml:mo> <mml:mn>4</mml:mn> </mml:mrow> <mml:annotation encoding="application/x-tex">4 \times 4</mml:annotation> </mml:semantics> </mml:math> </inline-formula> integral symplectic matrices is contained in <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="normal upper Gamma 2 left-parenthesis 4 right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi mathvariant="normal">Γ<!-- Γ --></mml:mi> <mml:mn>2</mml:mn> </mml:msub> </mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mn>4</mml:mn> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">{\Gamma _2}(4)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and contains <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="normal upper Gamma 2 left-parenthesis 8 right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi mathvariant="normal">Γ<!-- Γ --></mml:mi> <mml:mn>2</mml:mn> </mml:msub> </mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mn>8</mml:mn> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">{\Gamma _2}(8)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, with <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="normal upper Gamma 2 left-parenthesis n right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi mathvariant="normal">Γ<!-- Γ --></mml:mi> <mml:mn>2</mml:mn> </mml:msub> </mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mi>n</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">{\Gamma _2}(n)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> the principal congruence subgroup of level <italic>n</italic>. The Satake compactification of the quotient of the three-dimensional Siegel upper half space by <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="normal upper Gamma 2 left-parenthesis 2 comma 4 comma 8 right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi mathvariant="normal">Γ<!-- Γ --></mml:mi> <mml:mn>2</mml:mn> </mml:msub> </mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mn>2</mml:mn> <mml:mo>,</mml:mo> <mml:mn>4</mml:mn> <mml:mo>,</mml:mo> <mml:mn>8</mml:mn> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">{\Gamma _2}(2,4,8)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is shown to be a complete intersection of ten quadrics in <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="double-struck upper P Superscript 13"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="double-struck">P</mml:mi> </mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mn>13</mml:mn> </mml:mrow> </mml:msup> </mml:mrow> <mml:annotation encoding="application/x-tex">{\mathbb {P}^{13}}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We determine the space of global holomorphic three forms on this space, which coincides with the space of cusp forms of weight 3 on <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="normal upper Gamma 2 left-parenthesis 2 comma 4 comma 8 right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi mathvariant="normal">Γ<!-- Γ --></mml:mi> <mml:mn>2</mml:mn> </mml:msub> </mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mn>2</mml:mn> <mml:mo>,</mml:mo> <mml:mn>4</mml:mn> <mml:mo>,</mml:mo> <mml:mn>8</mml:mn> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">{\Gamma _2}(2,4,8)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>; it has dimension 2283. Finally, we study the action of the Hecke operators on this space and consider the Andrianov <italic>L</italic>-functions of some eigenforms.

Locations

  • Mathematics of Computation - View - PDF

Similar Works

Action Title Year Authors
+ The Cusp Forms of Weight 3 on Γ 2 (2, 4, 8) 1993 Bert van Geemen
Duco van Straten
+ PDF Chat Modular Forms on Noncongruence Subgroups and Atkin–Swinnerton-Dyer Relations 2010 Liqun Fang
J. William Hoffman
Benjamin Linowitz
Andrew Rupinski
Helena Verrill
+ Cusp forms of degree 2 and weight 3 1976 S. Raghavan
+ PDF Chat Normal subgroups of 𝑃𝑆𝐿₂(𝑍[√-3]) 1996 Roger C. Alperin
+ Congruence primes for cusp forms of weight k>2 1991 Fred Diamond
+ PDF Chat On the cuspidal spectrum of the arithmetic Hecke groups 1993 Marvin I. Knopp
+ A note on cusp forms and representations of SL<sub>2</sub>(𝔽<sub>𝑝</sub>) 2020 Zhe Chen
+ On the cusp forms for the congruence subgroups of SL 2(ℝ) 2009 Goran Muić
+ PDF Chat Terms in the Selberg trace formula for ${\rm SL}(3,{\bf Z})\backslash {\rm SL}(3,{\bf R})/{\rm SO}(3,{\bf R})$ associated to Eisenstein series coming from a maximal parabolic subgroup 1989 Dorothy Wallace
+ Non-existence of Siegel zeros for cuspidal functorial products on 𝐺𝐿(2)×𝐺𝐿(3) 2022 Wenzhi Luo
+ PDF Chat The modular degree and the congruence number of a weight 2 cusp form 2004 Alina Carmen Cojocaru
Ernst Kani
+ Cusp Forms of Weight 2 for the Group Γ 2 (4, 8) 1993 Riccardo Salvati-Manni
Jakob Top
+ On cusp forms for co-finite subgroups ofPSL(2,?) 1985 Ralph S. Phillips
Peter Sarnak
+ PDF Chat Doubly cuspidal cohomology for principal congruence subgroups of 𝐺𝐿(3,𝑍) 1992 Avner Ash
Mark McConnell
+ PDF Chat Contributions from conjugacy classes of regular elliptic elements in 𝑆𝑝(𝑛,𝑍) to the dimension formula 1984 Min King Eie
+ On signs of Fourier coefficients of Hecke-Maass cusp forms on 𝐺𝐿₃ 2023 Jesse Jääsaari
+ PDF Chat Comparison of Cusp Forms on $GL(3,{\bf Z})$ 2009 Namjong Moh
+ Congruences between cusp forms: the (p,p) case 1995 Chandrashekhar Khare
+ Congruences between cusp forms 1995 Chandrashekhar Khare
+ PDF Chat Spectral multiplicity for 𝐺𝑙_{𝑛}(𝑅) 1992 J. M. Huntley

Works That Cite This (10)

Action Title Year Authors
+ PDF Chat A new geometric description for Igusa’s modular form (azy)5 2013 Alessio Fiorentino
+ Basic vector valued Siegel modular forms of genus two 2013 Eberhard Freitag
Riccardo Salvati Manni
+ On Jacobian Kummer surfaces 2014 Kenji Koike
+ L-functions of<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msub><mml:mi>S</mml:mi><mml:mn>3</mml:mn></mml:msub><mml:mo stretchy="false">(</mml:mo><mml:msub><mml:mi>Γ</mml:mi><mml:mn>2</mml:mn></mml:msub><mml:mo stretchy="false">(</mml:mo><mml:mn>2</mml:mn><mml:mo>,</mml:mo><mml:mn>4</mml:mn><mml:mo>,</mml:mo><mml:mn>8</mml:mn><mml:mo stretchy="false">)</mml:mo><mml:mo stretchy="false">)</mml:mo></mml:math> 2011 Takeo Okazaki
+ On a ring of modular forms related to the theta gradients map in genus 2 2013 Alessio Fiorentino
+ BASIC VECTOR VALUED SIEGEL MODULAR FORMS OF GENUS TWO 2015 Eberhard Freitag
Riccardo Salvati Manni
+ The Mahler measure of a Calabi–Yau threefold and special $$L$$ L -values 2013 Matthew A. Papanikolas
Mathew D. Rogers
Detchat Samart
+ L-functions of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msub><mml:mi>S</mml:mi><mml:mn>3</mml:mn></mml:msub><mml:mo stretchy="false">(</mml:mo><mml:mi>Γ</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mn>4</mml:mn><mml:mo>,</mml:mo><mml:mn>8</mml:mn><mml:mo stretchy="false">)</mml:mo><mml:mo stretchy="false">)</mml:mo></mml:math> 2007 Takeo Okazaki
+ PDF Chat A one parameter family of Calabi-Yau manifolds with attractor points of rank two 2020 Philip Candelas
Xenia de la Ossa
Mohamed Elmi
Duco van Straten
+ A finite field hypergeometric function associated to eigenvalues of a Siegel eigenform 2012 Dermot McCarthy
Matthew A. Papanikolas